1.空间几何:主要研究事物的空间形式或关系的一门学科。
2.空间观念:是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。
3.空间表象:是指空间对象被个体内在的感知,是同构于它们所指的空间对象的物体或背景的全面的表述,是被加工后形成空间概念的基础。
4.空间定位:包括对物体的空间方位、空间距离以及空间大小等的识别,是形成空间观念的一个重要的标志,而且也是发展空间能力的一个重要的方面。
5.空间想象能力:是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。
6.直观化阶段:在这个阶段的儿童,往往是按照外观来识别图形,或者说只能建立一些关于“形状”的抽象,而并不关心图形的几何性质或一类图形的本质特征。
7.描述/分析阶段:在这个阶段的儿童,能通过观察、测量、搭建或绘画等活动,经验地建立图形的性质,并用日常生活的经验用语言将这些性质描述出来,从而能将这些性质与一类图形建立联系。
8.抽象/关联阶段:在这个阶段的儿童,已经开始能形成抽象的定义,区分概念的必要条件和充分条件,开始注意到不同图形性质之间的关系,因而能分层次地将图形进行分类,并对这些类别进行非形式化的论证。
1.问题:就是主体(个体)力图想要弄清楚或想要说明的困惑,也是主体(个体)力图想要解决的疑难。或者说,问题就是个体面临的一个不易达到的目标时的情境。
2.数学问题:是指人们在数学活动中所面临的、不能用现成的数学经验和方法解决的一种情境状态。它是一种情境,它具有足够的复杂性,它能对学生形成一定的挑战,它能在数学学习过程中起到开发数学思维的作用。
3.问题解决:是指以思考为内涵,以问题目标为定向的心理活动或心理过程。
4.问题空间:是由问题解决的起始状态、问题解决目标状态和一些算子所构成。
5.试误法:也叫尝试错误法,是指逐个尝试每一种可能性,如发现某一尝试是错误的就改为另一种尝试,直到获得问题的解决。
6.逆推法:是指在问题解决的过程中,从问题目标出发,向着问题情境的初始状态作反向的推导。
7.逼近法:也称作“爬山法”,就是在问题解决的过程中,在问题情境的初始状态与目标状态之间提出一些子目标,利用不断地获得子目标的实现来逼近问题目标。
8.问题表征:就是指形成问题的空间,包括明确问题所给定的条件、理解问题所要解决的目标以及问题解决所允许的操作等等。它是指一个心理的过程,一个审题并理解题意的过程。
9.定势:又称作“心向”,是指主体对一定活动的一种预先准备状态,心理学是指一种习惯性的行为倾向,在数学问题解决中也常表现出一种习惯性的“迁移”。
10.条件信息:是指问题已知的和给定的东西,它可以是一些数据、一种关系或者某种状态。
11.运算信息:运算在这里是指允许对条件所采取的行动,即可以采取哪些方式把数学问题由问题状态转化成目标状态,它是问题求解的依据。
12.常规性问题:也称定义明确问题,是指问题空间的三个部分都是明确的。
13.顿悟:是指问题解决过程中,由于多次尝试失败,暂时中止思考,利用其他的活动来调整,使之能帮助我们打开新的思路,一下子获得问题解决的途径。
14.探究启发:指在问题解决过程中,虽然没有现成的算法可直接利用,但却有某些与新问题情境有一定联系的图式可利用,从而帮助我们能更有效地进行尝试猜测和实验验证,使问题有可能获得解决。