一、选择题
1.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(3)=0,则不等式f(x)g(x)<0的解集是( )
A.(-3,0)(3,+∞) B.(-3,0)(0,3)
C.(-∞,-3)(3,+∞) D.(-∞,-3)(0,3)
答案:D 解题思路:因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以h(x)=f(x)g(x)为奇函数,当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,所以h(x)在(-∞,0)为单调增函数,h(-3)=-h(3)=0,所以当x<0时,h(x)<0=h(-3),解得x<-3,当x<0时,h(x)>0,解得-3
2.若f(x)=x2-2x-4ln x,不等式f′(x)>0的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,且p是q的充分不必要条件,则实数a的取值范围是( )
A.(-2,-1] B.[-2,-1]
C. D.[-2,+∞)
答案:D 解题思路:对于命题p: f(x)=x2-2x-4ln x, f′(x)=2x-2-=,
由f′(x)>0,得 x>2.由p是q的充分不必要条件知,命题p的解集(2,+∞)是命题q不等式解集的子集,对于命题q:x2+(a-1)x-a>0(x+a)(x-1)>0,当a≥-1时,解集为(-∞,-a)(1,+∞),显然符合题意;当a<-1时,解集为(-∞,1)(-a,+∞),则由题意得-2≤a<-1.综上,实数a的取值范围是[-2,+∞),故选D.
3.已知定义在R上的函数f(x),g(x)满足=ax,且f′(x)g(x) A.7 B.6 C.5 D.4 答案:B 解题思路:由f′(x)g(x) 4.(河南适应测试)已知函数f(x)是定义在R上的奇函数,且当x(-∞,0]时,f(x)=e-x-ex2+a,则函数f(x)在x=1处的切线方程为( ) A.x+y=0 B.ex-y+1-e=0 C.ex+y-1-e=0 D.x-y=0 答案:B 命题立意:本题考查了函数的奇偶性及函数的导数的应用,难度中等. 解题思路: 函数f(x)是R上的奇函数, f(x)=-f(-x),且f(0)=1+a=0,得a=-1,设x>0,则-x<0,则f(x)=-f(-x)=-(ex-ex2-1)=-ex+ex2+1,且f(1)=1,求导可得f′(x)=-ex+2ex,则f′(1)=e, f(x)在x=1处的切线方程y-1=e(x-1),即得ex-y+1-e=0,故应选B. 易错点拨:要注意函数中的隐含条件的挖掘,特别是一些变量的值及函数图象上的特殊点,避免出现遗漏性错误. 5.设二次函数f(x)=ax2-4bx+c,对x∈R,恒有f(x)≥0,其导数满足f′(0)<0,则的最大值为( ) A. B. C.0 D.1 答案:C 解题思路:本题考查基本不等式的应用.因为f(x)≥0恒成立,所以a>0且Δ=16b2-4ac≤0.又因为f′(x)=2ax-4b,而f′(0)<0,所以b>0,则==2-,又因4a+c≥2≥8b,所以≥2,故≤2-2=0,当且仅当4a=c,ac=4b2,即当a=b,c=4b时,取到最大值,其值为0. 技巧点拨:在运用均值不等式解决问题时,一定要注意“一正二定三等”,特别是要注意等号成立的条件是否满足. 6.已知函数f′(x),g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示,设函数h(x)=f(x)-g(x),则( ) A.h(1) B.h(1) C.h(0) D.h(0) 答案:D 解题思路:本题考查函数及导函数的图象.取特殊值,令f(x)=x2,g(x)=x3,则h(0)