一、指导思想
初中升学考试应有利于贯彻国家的教育方针,促进学校全面实施素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于引导新课程的实施,全面落实课程标准所设定的目标;有利于引导课程改革的深入开展,培养学生的实践能力和创新精神;有利于全面、准确地反映初中毕业生的学业水平;有利于师生的教与学,促进教学均衡发展;有利于初高中知识衔接,为后续学习打下坚实基础。
二、命题原则
初中毕业生数学学业考试要面向全体学生,坚持能力立意,以有利于推动课程改革的深入发展,有利于加强学科教与学的正确导向,尤其要把考查学生综合运用知识的能力放在首位,以有利于培养学生的创新意识和实践能力为原则.同时,也要注重引导学生理解和掌握进一步学习所必需的数学知识,为学生的终身学习奠基.
要从数学学科的特点出发,坚持考查数学基础知识、基本技能、数学思想方法和思维能力的方向;从促进学生学会学习的角度,考查获取新知识、独立学习的能力;从培养学生实践能力的角度,考查应用数学的意识,分析和解决在相关学科、生产和生活中带有实际意义的数学问题的能力;从培养学生创新意识的角度,考查发现问题、提出问题、探索和研究问题的能力和创新能力;从培养学生综合素质的角度,考查对数学本质属性的理解和掌握程度、综合运用各学科知识的能力和包括数学知识、技能、能力和个性品质等方面的综合素质,加强开放性问题的研究,增加、设置有价值的开放性试题,让学生自由发挥,以考查学生的创新精神和实践能力;加强对学科内知识的综合能力的考查,增加与其它学科间的知识渗透,以考查学生综合应用能力,培养学生的探究能力.
三、命题依据
《2016年中考改革方案》;《义务教育数学课程标准(2011年版)》;《齐齐哈尔市2017年数学学科考试说明》;人民教育出版社出版的义务教育教科书.
四、命题范围
以本地区使用的人民教育出版社出版的义务教育教科书为基准.
五、考查方式
考试采用闭卷笔答方式(实行网上集中阅卷),满分分值为120分,考试时间为120分钟.
六、试卷结构
数与代数内容约占50%,空间与图形内容约占40%,概率与统计内容约占10%.
试题的难度系数为0.75左右.
整卷难度与能力要求:基本能力占50%左右,透彻理解掌握数学概念、数学思想方法占30%左右,综合运用知识、创新能力占20%左右.试题易、中、难内容的比约为7:2:1,在后两个比中体现区分度.
题型分为单项选择题、填空题、解答题.其中单项选择题为10道左右,每小题3分;填空题为9道左右,每小题3分;解答题7道(其中包括计算题、图形变换题、二次函数图象与性质综合题、几何证明与计算题、统计初步应用题、一次函数图象信息题、数形结合题等).
七、考查内容
在《全日制义务教育数学课程标准(2011年版)》所要求的全部知识和技能中,命题内容要涵盖初中数学教材每章内容.为了升学考生更好的进行初高中知识衔接,加强对因式分解、一元二次方程、二次函数等相关知识的考查.根据我市教学及教材使用情况,考查知识点具体如下: 数与代数(62个考点)
1.有理数:
(1)理解有理数的意义.
(2)会比较有理数大小.
(3)借助数轴理解相反数和绝对值的意义.
(4)会求有理数的相反数.
(5)会求有理数的绝对值;知道|a|的含义(a表示有理数)绝对值符号内不含字母.
(6)掌握有理数的加、减、乘、除、乘方.
(7)掌握简单的混合运算,能运用运算律简化运算;有理数的加、减、乘、除、乘方及简单的混合运算以三步为主.
(8)理解有理数的运算律.
(9)能灵活处理较大数字的信息.
(10)能运用有理数的运算解决简单的问题.
2.实数:
(11)了解平(立)方根、算术平方根的概念.
(12)会用根号表示数的平(立)方根.
(13)会求平(立)方根.
(14)了解无理数、实数的概念,理解实数与数轴上的点一一对应,能求实数的相反数与绝对值.
(15)能用有理数估计无理数的大致范围.
(16)了解近似数的概念.
(17)了解二次根式、最简二次根式的概念,及二次根式(根号下仅限于数)加、减、乘、除运算法则.
(18)会进行实数的简单四则运算,实数的简单四则运算不要求分母有理化.
3.代数式:
(19)理解代数式的意义及表示.
(20)理解代数式的实际背景或几何意义.
(21)会求代数式的值.
4.整式与分式:
(22)了解整数指数幂的意义及基本性质.
(23)会用科学记数法表示数.
(24)了解整式的概念,掌握合并同类项和去括号的法则,会进行简单的整式加、减运算及简单的乘法运算;简单的整式乘法运算中,多项式相乘仅指一次式之间以及一次式与二次式相乘;乘法公式指:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2;因式分解(指数是正整数)时,直接用公式不超过二次.
(25)会推导乘法公式并能进行简单运算.
(26)会用提公因式法、公式法进行因式分解.
(27)掌握分式、最简分式的概念及基本性质,能利用分式的基本性质进行约分和通分.