2.IL-8受体家族IL-8R家族是趋化因子受体中能与IL-8结合的不同受体的总称,包括IL-8RA、IL-8RB和RBCCKR。
(1)IL-8RA:IL-8RAcDNA1991年基因克隆成功,是Holmes等从中性粒细胞cDNA表达文库中分离得到,人IL-8RA基因定位于染色体2q35,与IL-8RB基因密切连锁和高度同源,可能是从同一祖先基因经复制而来。从cDNA推算出IL-8RA由350氨基酸组成,有5个N连接的糖基化位点。裸肽分子量为40kDa,糖基化后55~69kDa,在氨基酸水平上与IL-8RB的同源性为77%。IL-8RA只与配体IL-8(碱性,PI8.0-8.5)结合,这与IL-8RA的结构有关,IL-8RaN端酸性氨基酸是与IL-8结合的位置,N端Asp11和e3中Gly275和Arg280对于与配体结合至关重要,由于Cys30与Cys277之间形成二硫键,Asp11、Glu275和Arg280在空间置上十分接近,共同参与同配体的结合。IL-8RA基因表达的细胞种类较为广泛,如中性粒细胞、单核细胞、PGA活化的T细胞、单核细胞样细胞系、黑素瘤细胞、滑液成纤维细胞、HL60细胞和前髓样细胞系THP-1等。
(2)IL-8RB:IL-8RBcDNA是首先从HL60细胞中克隆成功,推断的氨基酸残基数为335,有一个潜在的N连接糖基化位点。IL-8RB可与CXC亚族中IL-8、GROα、GROβ、GROγ和NAP-2结合。人IL-8RB主要表达于髓样细胞,如中性粒细胞、HL60、THP-1和AML193细胞。
(3)RBCCKR:这种受体结合配体的特异性较宽,又称multi-specificreceptor,可结合CXC亚族中的IL-8、NAP-2、GROα和CC亚族中的MCP-1和RANTES。人RBCCKRcDNA1993年克隆成功,基因定位于1q21-q25,成熟受体分子由338个氨基酸组成,分子量为39kDa,与IL-8RB和MIP-1α/RANTESR分别有27%和23%同源性。胞膜外区为66个氨基酸,含有2个潜在的N连接糖基化点,酸性。C端胞浆区长24个氨基酸残基,RBC-CKR似乎不G蛋白调节,可能是一种G蛋白的非偶联受体。RBCCKR是人红细胞Duffy抗原(gpD),也是微小间日疟原虫(Plasmodiumvivax)受体。Duffy血型阴性个体尽管存在着该血型的原因,但不表达Duffy抗原/RBCCKR。RBCCKR作为一种清除受体(clearancereceptor)清除血液中趋化因子。这种受体与配体结合的亲和力Kd为5nM,正常血清中IL-8水平在pM水平。在成人呼吸窘迫综合征(ARDS)、脓毒症时,血清IL-8水平可升高至8nM,过高水平的IL-8结合到RBCCKR而得以清除。IL-8等趋化因子结合到红细胞上后即失去了对靶细胞作用。红细胞的这种清除作用的意义还在于维持一个合适的趋化因子浓度,保证中性粒细胞等敏感地从血液中向趋化因子浓度高的炎症部位动。RBCCKR除表达在红细胞上外,还表达在肾脏、大脑,基因表在这还见于脾、肺和胸腺等。
3.受体的信号转导IL-8RA和IL-8RB中紧接第三个穿膜区(TMDⅢ)的第二个胞内环(i2)有一段高度保守的DRYLAIVHA序列,与受体信号的转导密切相关,其中DRY对于受体有效地偶联G蛋白是必要的,如用突变方法改变此序列,虽然不影响受体与配体的结合,但几乎完全丧失了配体刺激的生物学活性。IL-8R与配体结合后使与受体结合的异源三体G蛋白分解为α亚单位和βγ亚单位,α亚单位活化磷脂酶C(phospholipaseCPLC),导致胞浆内三磷酸肌醇(IP3)和二酰基甘油(DAG)增加,分别诱导胞浆内Ca库释放Ca2 和PKC的活化。此外,IL-8RA和IL-8RBC端丝氨酸和苏氨酸残基的磷酸化可能与信号的转导有关。
4.趋化因子受体与病毒最近发现某些感染人或灵长类病毒的开放读框产物与某些趋化因子受体有较高的同源性,这可能与病毒的致病以及病毒所具有的某些生物学特性有关。
(1)人巨细胞病毒(humancytomegalovirusHCMV):是一种可感染人上皮细胞、髓样和淋巴样细胞的β疱疹病毒(βHerpesvirus)。HCMV3个开放读框US27、US28和UL33所推断的氨基酸序列在分子结构上均可模拟STR,其中US28产物与人MIP-1α/RANTEsR约有30%同源性,与该受体N端的同源性高达56%。US28产物可与趋化因子β亚族中MIP-1α、MIP-1β、MCP-1和RANTES相结合,但不能结合α亚族中的趋化因子。
(2)Saimiri疱疹病毒(HerpesvirussaimiriHVS):是一种感染灵长类动物嗜T细胞的γ疱疹病毒(γHerpesvirus)。HVS开放读框ECRF3产物与IL-8R有近30%的同源性,与IL-8RbN端的同源性为44%。ECRF3产物与IL-8、GROα和NAP-2均可发生一定程度的结合。
HCMV-US28和HVS-ECRF3探针不能与人基因组DNA杂交,提示疱疹病毒不仅从宿主体内获得了趋化因子受体基因拷贝,而且进行了修饰。类似的现象见于嗜人B淋巴细胞的γ疱疹病毒-EB病毒(EBV),EBV开放读框BCRF1是从宿主体内获得的IL-10基因,BCRF1产物又称为病毒IL-10(vIL-10),可模拟哺乳动物IL-10的抗炎症和抗增殖效应。
共享链
大多数细胞因子受体是由两个或两个以上的亚单位组成的异源二聚体或多聚体,通常包括一个特异性配体结合α链和一个参与信号的β链。α链构成低亲和力受体,β链一般单独不能与细胞因子结合,但参与高亲和力受体的形成和信号转导。应用配体竟争结合试验、功能相似性分析以及分子克隆技术发现在细胞因子受体中存在着不同细胞因子受体共享同一种链的现象。
(一)细胞因子受体共享链的种类
在众多的细胞因子中,某些细胞因子的作用十分相似,如IL-3、IL-5、GM-CSF都作用于造血系统,促进造血干细胞或定向干细胞的增殖。IL-6、IL-11、LIF、OSM都能作用于肝细胞、巨核细胞、浆细胞瘤,发挥相似的生物学作用。IL-2、IL-4、IL-7、IL-9和IL-13均具有刺激T细胞或和B细胞增殖的作用。上述细胞因子功能的相似性已部分在受体水平得到解释,在很大程度上是由细胞因子受体共享链所决定的。目前已知,细胞因子共享链主要有gp310、GM-CSFRβ链和IL-2Rγ链。
1.gp130/LIFR为IL-6R、单抗MT18在骨髓瘤细胞系U266共沉淀中得到一种130kDa的糖蛋白,命名为gp130。1990年Hibi克隆成功,gp130,属于造血因子受体家族。IL-6、IL-11均能刺激IL-6信赖的小鼠浆细胞瘤系T1165的增殖,能在IL-3、GM-CSF的作用下缩短骨髓多能干细胞的Go期,增强IL-3依赖的人和小鼠的巨核细胞集落的形成,促进体内、体外的特异性抗体反应,诱导肝细胞急性期蛋白的产生。抗gp130能阴断IL-6、IL-11两种细胞因子分别诱导的TF1细胞的增殖,而抗IL-5R只能阴断IL-6诱导的TF1的增殖,表明IL-6、IL-11受体共用一个信号转导链。OSM受体存在着低亲和力及高亲和力两种受体,低亲和力受体即gp130,gp130与LIFR构成高亲和力受体。与在IL-6R、IL-11R中不同,gp130在OSMR中只形成低亲和力受体且不能单独转导细胞因子信号。高亲和力的LIF受体由LIFR和gp130组成,OSM与LIF能竞争结合高亲和力LIF受体,但不竞争结合低亲和力的LIF受体。
(4)IL-11Rα链(小鼠)与IL-6Rα链和CNTFRα链氨基酸同源性分别为24%和22%。
2.KH97/AIC2B为IL-3R、IL-5R、GM-CSFR所共用。在造血方面,IL-3与GM-CSF均能促进未成熟细胞、混合细胞及粒细胞-巨噬细胞集落的形成,激活单核细胞,促进嗜酸性粒细胞集落形成。IL-5除了促进B细胞分化和分泌抗体外,也具有刺激嗜酸性粒细胞分化作用。用GM-CSFRβ链分别与IL-3、IL-5、GM-CSFRα链共转染的试验证明,这三种细胞因子高亲和力受体中的β链在小鼠和人分别为AIC2B和KH97,它们有56%的同源性。
3.IL-2受体γ链除IL-2R含有γ链外,IL-4R、IL-7R、IL-9R和IL-13R复合物中也共用IL-2Rγ链(γc)。这些受体的相应配体是一组主要作用于T细胞的生长因子。以IL-2γ链异常为主要特征的X联锁严重免疫缺陷综合症患者显示出T细胞发育异常,T细胞的缺乏或数量明显减少,提示IL-2γ链在T细胞的发育中起至关重要的作用。IL-4、IL-7均在T细胞的发育中起作用,它们共用一条信号转导链IL-2Rγ链来传递T细胞增殖的信号。在IL-2受体系统中,α链构成低亲和力受体,中亲和力受体由β、γ链组成,高亲和力受体由α、β、γ三条链组成,其中,γ链相当于其它细胞因子受体的β链,参参与信号传递,而αβ链则相当于α链,主要发挥识别和结合配体的作用。
(二)共享链与细胞因子受体信号转导
细胞因子信号转导首先需要配体与受体结合并诱导受体二聚体(或三聚体)的形成,使二聚体(或三聚体)胞浆部分的相互作用,由此引起不同途径的信号转导。在IL-2R系统中,受β、γ链的二聚作用对于信号的转导是必须的,缺乏β链胞浆区的IL-2R不能转导IL-2刺激所发生的信号。大多数的细胞因子对细胞的刺激及信号转导与酪氨酸激酶的活化及细胞内蛋白的酪氨酸磷酸化有关,细胞因子与受体结合可以引起受体成分的酪氨酸磷酸化。ERS胞浆区近膜端的60个氨基酸残基是高度保守的,这段同源序列对IL-6、G-CSF、EPO、IL-7的信号转导起着关键作用,提示这些受体可能利用相似的胞膜内信号转导机制。
1.gp130介导信号转导在IL-6R、IL-11R、OSMR、LIFR、CNTFR的信号转导共用链gp130中,其胞浆区约277个氨基酸残基中包含丝氨酸富含区、核苷酸结合区及4个GTP结合模式区。其中的丝氨酸富含区也存在于G-CSFR、IL-2Rβ、IL-4R和EPOR,其它的ERS成员有着明显的同源性。其中一个片段在所有ERS成员中都是保守的,另一个片段存在于G-CSFR、EPOR、KH97中。这两个短的片段中,无论哪个发生突变都将使gp130不能发生酪氨酸磷酸化,丧失信号转导的能。LIFR/gp130异源双体也与酪氨酸磷gp130不能发生要酪氨酸磷酸化,丧失信号转导的功能。LIFR/gp130异源双体也与酪氨酸磷酸化有关。虽然大多数造血因子受体家族成员均不具有酪氨酸激酶结构域,但它们与酪氨酸激酶型生长因子受体相似,生长因子引起与之相关的受体酪氨酸激酶二聚体的形成和激活,而造血因子可能是诱导其受体的二聚体形成并导致相关酪氨酸激酶的活化。已发现在IL-6、IL-11刺激的TF1细胞中检测出分子量97/95kDa的蛋白发生了酪氨酸磷酸化,抗gp130的信号转导中很重要。在不同的细胞系3T3-L1、B细胞杂交瘤、髓样白血病系中发现有不同分子量蛋白的要酪氨酸磷酸化,提示在不同的细胞系中存在细胞特异的酪氨酸激酶及各自特异的底物,这可能是共用gp130的IL-6、IL-11、LIF、CNTF、OSM在不同细胞中生物学作用差异的原因一。JAK2是一种非受体型的酪氨酸激酶,可以被EPO、IL-3、G-CSF、IL-6等多种细胞因子刺激所激活,JAK2可能是这些不同的细胞因子受体信号转导途径中的一个共同因素,这种与受体相联的JAK2激酶可能因受体结构的不同而催化不同的底物,从而导致了JAK2介导了许多不同的生和的学功能。此外,gp130在IL-6、IL-11、CNTF、LIF的刺激后也发生了自身的酪氨酸磷酸抡。
2.KH97/AIC2B介导信号传导在IL-3、IL-5、GM-CSF的信号转导链KH97/AIC2B的胞浆区内也存在着两个产生不同信号所必需的区域:一个是Glu517上游近膜端的约60个氨基酸的区域,它是诱导c-myc和pim-1所必需的;另一个区域是Leu623至Ser763约140个氨基酸的胞浆区域,是Ras、Raf、MAP(丝裂原激活的蛋白激酶)的激活以c-fos、c-jun的诱导所必需的。hGM-CSFRα、β链无任何已知酶的催化区,共转染hGM-CSFα、β链的Ba/F3细胞的地冽同C-Myc、pim-1水平的延长增加相关联的。在小鼠淋巴细胞系转染GM-CSFα、β链后可以引韦胞内数种蛋白的酪氨酸磷酸化并引起增殖反应,α、β链共转染小鼠NIH3T3细胞表达GM-CSFR高亲和力受体,可引起表达的β链胞浆区和另外一个有包浆内40-45kDa蛋白的酪氨酸快速磷酸化。