就是说,所谓的“综合精度”实际是精度的进一步分解的含义而恰恰不是综合的含义。
3. 精度计算方法问题
不仅精度的计算方法是要将许多主要误差进行剥离剔除处理、具有一定的自我安慰色彩,而且在精度的起算数据的使用上也存在不加区别的问题。譬如:水准测量的一公里往返标准差这一精度概念被用做水准测量精度的评价依据其实就存在偷换概念色彩。
请注意,一公里往返标准差的直接原始起算数据是环路高程闭合差,而不是每一测量点的真误差!所以一公里往返标准差反映的是水准测量环路闭合差的离散特性,而不是水准测量点位误差的离散特性!拿环路闭合差的离散特性和测量点位误差进行直接关联或间接关联的做法实质就是把测量点位误差和环路闭合差进行了概念偷换。
最能证明水准测量点位误差的离散度和水准测量闭合差的离散度没有数学上的直接或间接关联的证据就是:1、水准标尺的尺长比例改正误差(系统误差)对水准测量点位误差的影响是直接的,而它对水准环路闭合差却不产生影响;2、测量参考起点本身的误差对每一个测量点的精度的影响是直接的,但它却也不影响环路闭合差;3、仪器的分辨误差对每一测量点的精度的影响是直接的,但分辨误差足够大时却能导致闭合差为零。
正因为有了这样的以闭合差来评价精度,才有了甚至测量结果的精度反而比测量参考起点的“精度”更高的反逻辑,才有了“精度”越测越高的反逻辑,才有了经过绵延数千公里测量路径而“精度”丝毫不受损失。
这都是用于平差的统计起算原始数据不涉及真误差、不涉及真值的后果,是把测量过程的部分精度损失量偷换成测量结果的精度的后果。
实际上,测量成果的精度=测量参考源的精度+测量过程的精度损失量=测量参考源的精度+测量过程的系统误差损失量+测量过程的随机误差损失量。
所以一般的原理是:测量过程实际都是精度的损失过程,被测量的结果的精度不可能超过测量参考源的精度。
测量平差可以对测量结果的误差进行估计评价当然是无庸置疑的,但平差结果却因统计起算的原始数据不同而有着决然不同的含义:如果以真误差直接统计,则当然可以获得结果的总体误差评价;如果虽然以真误差为统计起算数据但却将系统误差模型纳入进行最小二乘平差,则获得的平差值将是测量结果的随机误差部分的评价;如果不以测量结果的真误差为统计起算数据,而以测量结果的组合值的真误差(譬如闭合差)为统计起算数据,则平差结果将可能只是测量过程的随机误差损失量的一部分的评价,因为测量结果的组合过程可能将结果中包含的许多误差(譬如:一些测量工具的系统误差、测量参考源本身的系统误差和随机误差等)进行了抵偿,这些被抵偿掉的误差当然不可能再在平差结果中反映出来。