自学考试《普通逻辑》章节习题及答案:第3章
一、请运用假言推理的有关知识,回答下列问题:
1.错误。因为这是个充分条件假言推理,充分条件假言推理的规则指出:“否定前件不能否定后件”,而这个推理却是从否定前件到否定后件。
2.错误。因为这是个必要条件假言推理,它的前提否定了后件,从而结论否定了前件,违反了必要条件假言推理的规则。
3.正确。这个推理的形式可表示为:((pÙqÙr) ←s)Ù (ØpÚØqÚØr)→Øs。这是个必要条件假言推理的否定前件式,它是个有效式。
4.学生甲、乙两人的回答都不合逻辑。甲运用的是充分条件假言推理,他违反了“肯定后件不能肯定前件”的规则。乙运用的是必要条件假言推理,他违反了“肯定前件不能肯定后件”的规则。
5.A、B、C、D四个学生关于裹尸布真伪的言论,都运用了假言推理。因此,他们的言论是否正确,我们只要借助假言推理的规则逐一加以检查就清楚了。
①A的言论实际上包含一个充分条件假言推理的否定后件式。这个推理就其形式结构来说是正确的(符合“否定后件就要否定前件”的规则)。但是它的大前提是错误的。即“如果它是假的,那么它就不可能在六百多年时间里一直被我们的教友所敬奉”,这一充分条件假言命题在事实也是不成立的。因为,由于宗教迷信的影响和欺骗,即使它是假的,也可能为宗教徒所祟拜。
②B的看法也包含一个充分条件假言推理。这个推理在形式上是错误的,因为它是从肯定后件到肯定前件,违反了充分条件假言推理的规则。
③C的看法包含一个必要条件假言推理。它从肯定前件到肯定后件,这是违反必要条件假言推理的规则的。
④D的看法运用了充分条件假言推理的否定后件式,即从否定后件到否定前件,这是符合充分条件假言推理的规则的,因而他的推理是合乎逻辑的。
6.警方的三个推理都是错误的。警方的第一个推理是一个必要条件假言推理,它从肯定前件到肯定后件,违反了必要条件假言推理的规则,警方的第二个推理,是一个充分条件假言推理,它从肯定后件到肯定前件,违反了充分条件假言推理的规则;警方的第三个推理,是一个充分条件假言推理,它从否定前件到否定后件,违反了充分条件假言推理的规则。
7.可以认为包含着一个必要条件的假言推理:“只有念书念得好,才能住这样漂亮的高楼;爷爷未能住这样漂亮的高楼,所以,爷爷一定是没有好好学习。”这个推理是不正确的,它违反了“否定后件不能否定前件”的必要条件假言推理的规则。当然,爷爷的话也未必正确。
8.①如果甲的自述是错误的,那么,甲、乙、丙、丁分别为B、O、AB、A型。因为如果甲是错误的,那么,乙、丙、丁的自述就正确了。这样,乙为O型,丙为AB型,丁或者是A,或者是B。既然甲不是A型,那么,丁是A型,而甲就是B型了。
②如果乙的自述是错误的,那么,同理,甲、乙、丙、丁分别为A、B、AB、O型。
③如果丙的自述是错误的,不能得出结论。因为如果丙的自述是错误的,那么,甲、乙、丁的自述就正确了。这样,甲、乙、丁应分别为A、O、B型。结果,丙应为AB型。但丙自述为AB型是错误的,这就说明上述的前提是不能得出结论的。
④如果丁的自述是错误的,同理,也不能得出结论。
9.上场的是G、A、B、C、E、R六名队员。整个推理分九个步骤:
(1)根据前提②和“G一定要上场”的题设,可以推出D不上场。其推理公式为:只有D不上场,G才上场;现已知G上场,所以,D不上场。这是必要条件假言推理的肯定后件式。
(2)根据前提④,可以推知R上场。其推理式为:当且仅当D上场,R才不上场;现已知D不上场;所以,R上场。这是充分必要条件假言推理的否定前件式。
(3)根据前提⑤,可推知C上场。其推理形式为:只有R不上场,C才不上场;现已知R上场,所以,C也要上场。这是必要条件假言推理的否定前件式。
(4)根据前提③,可推A上场。其推理形式为:当且仅当A上场,C才上场;现已知C上场,所以,A也上场。这是充分必要条件假言推理的肯定后件式。
(5)根据前提⑥,可推知P不上场。其推理形式为:要么P上场,要么A上场;已知A上场,所以,P不上场。这是不相容选言推理的肯定否定式。
(6)根据前提①可推知S不上场。其推理形式为:如果P不上场,那么,S就不上场;现已知P不上场,所以,S不上场。这是充分条件假言推理的肯定前件式。
(7)根据前提⑦,可推知T和Q不上场。其推理形式为:如果S不上场,那么T和Q不上场;已知S不上场,所以,T和Q不上场。这是充分条件假言推理的肯定前件式。
(8)根据前提⑧,可推知F不上场。其推理形式为:如果R上场,那么F不上场;已知R上场;所以,F不上场。这是充分条件假言推理的肯定前件式。
通过以上几个步骤推知不上场的队员是D、P、S、T、F、Q。
(9)最后通过不相容选言推理的否定肯定式,可推知B和E上场。其推理形式为:B和E要么上场,要么不上场;已知,B和E不上场是不可能的(已有D、P、S、T、F、Q六人不上场;所以,B和E要上场
10.9号不该上场。推理过程如下:
根据前提②,可推出3号上场(必要条件假言推理的否定前件式);
根据前提③,可推出6号不上场(不相容选言推理的肯定否定式);
根据前提①,可推知4号不上场(充分条件假言推理的否定后件式);
根据前提④,可推出9号不上场(先运用充分条件假言推理否定后件式推出“并非9号和12号同时上场”,然后通过相容选言推理的否定肯定式推出9号不上场)。
二、以下列命题为前提进行推理,能否得出结论?如果能,结论是什么?并把推理形式写出来。
1.不能得结论。
以p表示“这份统计表材料失实”,用q表示“这份统计表抄写有误”,用r表示“这份统计表计算有误”,这样,这个推理形式可表示为: (pÚqÚr) Ùq→?这是个相容选言推理的肯定式,而肯定式是个错误式。
2.能。结论是“这个人的业余生活肯定是比较单调的”。
以p表示“某人爱好文学艺术”,以q表示“某人爱好体育活动”,以r表示“某人的业余生活肯定是比较单调的。”这样,这个推理形式可表示为: ((ØpÙØq→r) ÙØ (pÚq)→r)。
这是充分条件假言推理的肯定前件式,是个正确式。
3.能。结论是:“或者他头脑不清楚,或者他态度不诚恳”。
以p表示“他头脑清楚”,以q表示“他态度诚恳”,以r表示“他就会认识自己的错误”,以s表示“他就会承认自己的错误”。这样,这个推理的形式可表示为: ((p→r) Ù(q→s)) Ù(ØrÚØs)→(ØpÚØq)。这是复杂破坏式二难推理,其推理形式是正确的。
4.能。结论是:“老赵临时有急事”。
以p表示“老赵有病”,以q表示“老赵临时有急事”,以r表示“老赵会打电话来”。这里包含着两个推理,它们的推理形式可表示为:
(p→r) ÙØr→Øp 充分条件假言推理的否定后件式
(pÚq) ÙØp→q 相容选言推理的否定肯定式
5.结论是:唐颖和祝芳去苏州旅游。
用p表示“王璐去苏州旅游”,用q表示“唐颖去苏州旅游”,用r表示“祝芳去苏州旅游”,用s表示“陈蓉必然知道”,推理过程可表示为:(p→s) Ù Øs→Øp; (pÚq) ÙØp→q; (q→r) Ùq→r。