14.(2014•毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD= ,BC=4,则AC的长为( )
A. 1 B.4
C. 3 D.2
考点: 圆周角定理;解直角三角形
分析: 由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD= ,BC=4,即可求得答案.
解答: 解:∵AB为直径,
∴∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠B=∠ACD,
∵cos∠ACD= ,
∴cos∠B= ,
∴tan∠B= ,
∵BC=4,
∴tan∠B= = = ,
∴AC= .
故选D.
点评: 此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.
15.(2014年天津市,第2 题3分)cos60°的值等于( )
A. 1/2B. 1C.3 D.5
考点: 特殊角的三角函数值.
分析: 根据特殊角的三角函数值解题即可.
解答: 解:cos60°= .
故选A.
点评: 本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.
二、填空题
1. (2014年贵州黔东南11.(4分))cos60°= .
考点: 特殊角的三角函数值.
分析: 根据特殊角的三角函数值计算.
解答: 解:cos60°=.
点评: 本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.
2. (2014•江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC= .
考点: 锐角三角函数的定义;等腰三角形的性质;勾股定理
分析: 先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE= .
解答: 解:过点A作AE⊥BC于点E,
∵AB=AC=5,
∴BE=BC=×8=4,∠BAE=∠BAC,
∵∠BPC=∠BAC,
∴∠BPC=∠BAE.
在Rt△BAE中,由勾股定理得
AE= ,
∴tan∠BPC=tan∠BAE= .
故答案为:.
点评: 求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.
3.(2014•四川内江,第23题,6分)如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是 .