12. ( 2014•珠海,第20题9分)阅读下列材料:
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解∵x﹣y=2,∴x=y+2
又∵x>1,∵y+2>1.∴y>﹣1.
又∵y<0,∴﹣1 同理得:1 由①+②得﹣1+1 ∴x+y的取值范围是0 请按照上述方法,完成下列问题: (1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1 (2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示). 考点: 一元一次不等式组的应用. 专题: 阅读型. 分析: (1)根据阅读材料所给的解题过程,直接套用解答即可; (2)理解解题过程,按照解题思路求解. 解答: 解:(1)∵x﹣y=3, ∴x=y+3, 又∵x>2, ∴y+3>2, ∴y>﹣1. 又∵y<1, ∴﹣1 同理得:2 由①+②得﹣1+2 ∴x+y的取值范围是1 (2)∵x﹣y=a, ∴x=y+a, 又∵x<﹣1, ∴y+a<﹣1, ∴y<﹣a﹣1, 又∵y>1, ∴1 同理得:a+1 由①+②得1+a+1 ∴x+y的取值范围是a+2 点评: 本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般. 13.(2014•四川自贡,第23题12分)阅读理解: 如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题: (1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由; (2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点; (3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系. 考点: 相似形综合题 分析: (1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解. (2)以CD为直径画弧,取该弧与AB的一个交点即为所求; (3)因为点E是矩形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解. 解答: 解:(1)∵∠A=∠B=∠DEC=45°, ∴∠AED+∠ADE=135°,∠AED+∠CEB=135° ∴∠ADE=∠CEB, 在△ADE和△BCE中, , ∴△ADE∽△BCE, ∴点E是否是四边形ABCD的边AB上的相似点. (2)如图所示:点E是四边形ABCD的边AB上的相似点, (3)∵点E是四边形ABCM的边AB上的一个强相似点, ∴△AEM∽△BCE∽△ECM, ∴∠BCE=∠ECM=∠AEM. 由折叠可知:△ECM≌△DCM, ∴∠ECM=∠DCM,CE=CD, ∴∠BCE=∠BCD=30°, BE= , 在Rt△BCE中,tan∠BCE= =tan30°= , ∴ . 点评: 本题是相似三角形综合题,主要考查了相似三角形的对应边成比例的性质,读懂题目信息,理解全相似点的定义,判断出∠CED=90°,从而确定作以CD为直径的圆是解题的关键.