考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2015年四川中考数学考前必做专题试题—图表信息题_第3页

来源:中华考试网收藏本页   【 】  [ 2015年3月19日 ]

  3. (2014•江西抚州,第24题,10分)

  【试题背景】已知:∥ ∥ ∥,平行线与 、 与 、 与之间的距离分别为 1、 2、 3,且 1 = 3 = 1, 2 = 2 . 我们把四个顶点分别在、 、 、这四条平行线上的四边形称为“格线四边形”.

  【探究1】 ⑴ 如图1,正方形 为“格线四边形”, 于点 , 的反向延长线交直线于点 . 求正方形 的边长.

  【探究2】 ⑵ 矩形 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形 的宽为 . (直接写出结果即可)

  【探究3】 ⑶ 如图2,菱形 为“格线四边形”且∠ =60°,△ 是等边三角形, 于点 , ∠ =90°,直线 分别交直线、于点 、 . 求证: .

  【拓 展】 ⑷ 如图3,∥,等边三角形 的顶点 、 分别落在直线、上, 于点 ,且 =4 ,∠ =90°,直线 分别交直线、于点 、 ,点 、 分别是线段 、 上的动点,且始终保持 = , 于点 .

  猜想: 在什么范围内, ∥ ?并说明此时 ∥ 的理由.

  解析:(1) 如图1,

  ∵BE⊥l , l ∥k ,

  ∴∠AEB=∠BFC=90°,

  又四边形ABCD是正方形,

  ∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,

  ∴⊿ABE≌⊿BCF(AAS),

  ∴AE=BF=1 , ∵BE=d1+d2=3 , ∴AB= ,

  ∴正方形的边长是 .

  (2)如图2,3,

  ⊿ABE∽⊿BCF,

  ∴ 或

  ∵BF=d3=1 ,

  ∴AE= 或

  ∴AB= 或

  AB=

  ∴矩形ABCD的宽为 或 .

  (注意:要分2种情况讨论)

  (3)如图4,

  连接AC,

  ∵四边形ABCD是菱形,

  ∴AD=DC,

  又∠ADC=60°,

  ∴⊿ADC是等边三角形,

  ∴AD=AC,

  ∵AE⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,

  ∵⊿AEF是等边三角形, ∴ AF=AE,

  ∴⊿AFD≌⊿AEC(HL), ∴EC=DF.

  (4)如图5,

  当2

  理由如下:

  连接AM,

  ∵AB⊥k , ∠ACD=90°,

  ∴∠ABE=∠ACD=90°,

  ∵⊿ABC是等边三角形,

  ∴AB=AC ,

  已知AE=AD, ∴⊿ABE≌⊿ACD(HL),∴BE=CD;

  在Rt⊿ABM和Rt⊿ACM中,

  ,∴Rt⊿ABM≌Rt⊿ACM(HL),

  ∴ BM=CM ;

  ∴ME=MD,

  ∴ , ∴ED∥BC.

  4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).

  教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.

  学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:

  ①存在函数,其图象经过(1,0)点;

  ②函数图象与坐标轴总有三个不同的交点;

  ③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;

  ④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.

  教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.

  考点: 二次函数综合题

  分析: ①将(1,0)点代入函数,解出k的值即可作出判断;

  ②首先考虑,函数为一次函数的情况,从而可判断为假;

  ③根据二次函数的增减性,即可作出判断;

  ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.

  解答: 解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,

  解得:k=0.

  运用方程思想;

  ②假,反例:k=0时,只有两个交点.运用举反例的方法;

  ③假,如k=1,﹣ =,当x>1时,先减后增;运用举反例的方法;

  ④真,当k=0时,函数无最大、最小值;

  k≠0时,y最= =﹣ ,

  ∴当k>0时,有最小值,最小值为负;

  当k<0时,有最大值,最大值为正.运用分类讨论思想.

  点评: 本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.

我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照