考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2015年四川中考数学考前必做专题试题—梯形_第2页

来源:中华考试网收藏本页   【 】  [ 2015年3月6日 ]

  5. (2014•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=(  )米.

  (第1题图)

  A. 7.5 B. 15 C. 22.5 D. 30

  考点: 三角形中位线定理

  分析: 根据三角形的中位线得出AB=2DE,代入即可求出答案.

  解答: 解:∵D、E分别是AC、BC的中点,DE=15米,

  ∴AB=2DE=30米,

  故选D.

  点评: 本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.

  6.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为(  )

  A. 4 米 B. 6 米 C. 12 米 D. 24米

  考点: 解直角三角形的应用-坡度坡角问题.

  分析: 先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.

  解答: 解:在Rt△ABC中,∵ =i= ,AC=12米,

  ∴BC=6米,

  根据勾股定理得:

  AB= =6 米,

  故选B.

  点评: 此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.

  7. (2014•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为(  )

  A. 12 B. 15 C. 12 D. 15

  考点: 等腰梯形的性质.

  分析: 过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.

  解答: 解:过点A作AE∥CD,交BC于点E,

  ∵梯形ABCD是等腰梯形,∠B=60°,

  ∴AD∥BC,

  ∴四边形ADCE是平行四边形,

  ∴∠AEB=∠BCD=60°,

  ∵CA平分∠BCD,

  ∴∠ACE=∠BCD=30°,

  ∵∠AEB是△ACE的外角,

  ∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,

  ∴∠EAC=30°,

  ∴AE=CE=3,

  ∴四边形ADEC是菱形,

  ∵△ABE中,∠B=∠AEB=60°,

  ∴△ABE是等边三角形,

  ∴AB=BE=AE=3,

  ∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.

  故选D.

  点评: 本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.

  8.(2014•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(  )

  A. 80° B. 90° C. 100° D. 110°

  考点: 梯形;等腰三角形的性质;平行四边形的判定与性质.

  分析: 根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°.

  解答: 解:∵DE=DC,∠C=80°,

  ∴∠DEC=80°,

  ∵AB∥DE,

  ∴∠B=∠DEC=80°,

  ∵AD∥BC,

  ∴∠A=180°﹣80°=100°,

  故选:C.

  点评: 此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补.

  9.(2014•台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE=6 ,则AD的长度为何?(  )

  A.8 B.9 C.62 D.63

  分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.

  解:∵AE⊥BC,

  ∴∠AEB=90°,

  ∵AB=10,BE=8,

  ∴AE=AB2-BE2=102-82=6,

  ∵AD∥BC,

  ∴∠DAE=∠AEB=90°,

  ∴AD=DE2-AE2=(63)2-62 =62.

  故选C.

  点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.

  10. (2014年广西钦州,第10题3分)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是(  )

  A. 13 B. 26 C. 36 D. 39

  考点: 等腰梯形的性质;中点四边形.

  分析: 首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.

  解答: 解:连接AC,BD,

  ∵等腰梯形ABCD的对角线长为13,

  ∴AC=BD=13,

  ∵点E、F、G、H分别是边AB、BC、CD、DA的中点,

  ∴EH=GF=BD=6.5,EF=GH=AC=6.5,

  ∴四边形EFGH的周长是:EH+EF+FG+GF=26.

  故选B.

  点评: 此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照