单独报考
当前位置:中华考试网 >> 高考 >> 湖南高考 >> 湖南高考数学模拟题 >> 2015高考数学一轮复习同步检测:《排列与组合》

2015高考数学一轮复习同步检测:《排列与组合》_第3页

中华考试网  2014-12-12  【
三、解答题

  . 7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种.

  (1)A,B必须当选;

  (2)A,B必不当选;

  (3)A,B不全当选;

  (4)至少有2名女生当选;

  (5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.

  解 (1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C=120种选法.

  (2)从除去的A,B两人的10人中选5人即可,故有C=252种选法.

  (3)全部选法有C种,A,B全当选有C种,故A,B不全当选有C-C=672种选法.

  (4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进行.所以有C-C·C-C=596种选法.

  (5)分三步进行;

  第1步,选1男1女分别担任两个职务有C·C种选法.

  第2步,选2男1女补足5人有C·C种选法.

  第3步,为这3人安排工作有A方法.由分步乘法计数原理,共有CC·CC·A=12 600种选法.

  .要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?

  (1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.

  (1)C-C=771;

  (2)C+CC+CC=546;

  (3)CC=120;

  (4)C-CC=672;

  (5)C-C=540.

  .某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:

  (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?

  (2)甲、乙均不能参加,有多少种选法?

  (3)甲、乙两人至少有一人参加,有多少种选法?

  (4)队中至少有一名内科医生和一名外科医生,有几种选法?

  解 (1)只需从其他18人中选3人即可,共有C=816(种);

  (2)只需从其他18人中选5人即可,共有C=8 568(种);

  (3)分两类:甲、乙中有一人参加,甲、乙都参加,

  共有CC+C=6 936(种);

  (4)方法一 (直接法):

  至少有一名内科医生和一名外科医生的选法可分四类:

  一内四外;二内三外;三内二外;四内一外,

  所以共有CC+CC+CC+CC=14 656(种).

  方法二 (间接法):

  由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C-(C+C)=14 656(种).

  .已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.

  (1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?

  (2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?

  (1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试.

  第2次测到第一件次品有4种抽法;

  第8次测到最后一件次品有3种抽法;

  第3至第7次抽取测到最后两件次品共有A种抽法;剩余4次抽到的是正品,共有AAA=86 400种抽法.

  (2)检测4次可测出4件次品,不同的测试方法有A种,

  检测5次可测出4件次品,不同的测试方法有4AA种;

  检测6次测出4件次品或6件正品,则不同的测试方法共有4AA+A种.

  由分类计数原理,满足条件的不同的测试方法的种数为

  A+4AA+4AA+A=8 520.

123
纠错评论责编:xiejinyan
相关推荐
热点推荐»