单独报考
当前位置:中华考试网 >> 高考 >> 湖南高考 >> 湖南高考数学模拟题 >> 2015高考数学一轮复习同步检测:《分类加法计数原理》

2015高考数学一轮复习同步检测:《分类加法计数原理》_第2页

中华考试网  2014-12-11  【

  二、填空题

  .将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设Ni(i=1,2,3)表示第i行中最大的数,则满足N1

  解析 由已知数字6一定在第三行,第三行的排法种数为AA=60;剩余的三个数字中最大的一定排在第二行,第二

  行的排法种数为AA=4,由分步计数原理满足条件的排列个数是240.

  答案 240

  .数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.

  解析 必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.

  答案 12.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.

  解析 当相同的数字不是1时,有C个;当相同的数字是1时,共有CC个,由分类加法计数原理得共有“好数”C+CC=12个.

  答案 12

  给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:

  由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)

  三、解答题

  .如图所示三组平行线分别有m、n、k条,在此图形中

  (1)共有多少个三角形?

  (2)共有多少个平行四边形?

  解 (1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.

  (2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成CC+CC+CC个平行四边形.

123
纠错评论责编:xiejinyan
相关推荐
热点推荐»