答案解析
1.【解析】选D。由于木块沿圆弧下滑速率不变,故木块做匀速圆周运动,存在向心加速度,选项A错误;由牛顿第二定律得:F合=ma=m,而v的大小不变,故合外力的大小不变,选项B错误;由于木块在滑动过程中与接触面的正压力是变化的,故滑动摩擦力在变化,选项C错误;木块在下滑过程中,速度的大小不变,所以向心加速度的大小不变,方向始终指向圆心,选项D正确。
2.【解析】选C、D。由于质点走过的弧长s与运动时间t成正比,质点运动的线速度大小不变,选项A错误;由于螺旋线的曲率半径r越来越小,由向心加速度公式a=可知向心加速度越来越大,所受合外力越来越大,选项B错误、D正确;由角速度公式ω=可知角速度越来越大,选项C正确。
3.【解析】选A。若拉力突然消失,则小球沿着P点处的切线做匀速直线运动,选项A正确;若拉力突然变小,则小球做离心运动,但由于力与速度有一定的夹角,故小球做曲线运动,选项B、D错误;若拉力突然变大,则小球做近心运动,不会沿轨迹Pb做离心运动,选项C错误。
4.【解析】选C。小球受重力和杆的作用力如图所示:
小球做匀速圆周运动,由牛顿第二定律得:F向=mω2R,故F==,选项C正确。
5.【解析】选C、D。小球在最高点时刚好不脱离圆环,则圆环刚好对小球没有作
用力,小球只受重力,重力竖直向下提供向心力,选项A、B错误;根据牛顿第二定律得mg=ma,解得小球的向心加速度大小为a=g,选项D正确;由a=得v=,选项C正确。
6.【解析】选C。前进速度即为Ⅲ轮的线速度,由同一个轮上的角速度相等,同一皮带传动的两轮边缘的线速度相等可得ω1r1=ω2r2,ω3=ω2,再有ω1=2πn,v=
ω3r3,所以v=,选项C正确。
【总结提升】传动问题的解题技巧
(1)明确皮带传动和轮轴的特点。
(2)清楚线速度、角速度、向心加速度与半径的关系,从而能熟练地运用在线速度或角速度相等时,角速度、线速度、加速度与半径的比值关系。
(3)同转轴上各点ω相同,而线速度v=ωr与半径成正比。
(4)不考虑皮带打滑的情况,两轮边缘的各点线速度大小相等,而角速度ω=与半径成反比。另外,由v、T、f、ω之间的关系,向心加速度的表达式an==ω2r=ωv=r=4π2f2r,在应用时,要结合已知条件灵活运用。
7.【解析】选B、D。当圆盘转速加快到两物体刚要发生滑动时,A物体靠细线的拉力与圆盘的最大静摩擦力的合力提供向心力做匀速圆周运动,所以烧断细线后,A所受最大静摩擦力不足以提供其做圆周运动所需要的向心力,A要发生相对滑动,但是B仍保持相对圆盘静止状态,故A、C选项错误,D选项正确;而且由于没有了细线的拉力,B受静摩擦力减小,B选项正确。
8.【解析】选A。飞机在A点和B点时受力情况相同,即FNA=FNB,在A点对飞行员由牛顿第二定律得FNA+mg=m,解得FNA=m-mg;飞机在C点和D点时受力情况相同,即FNC=FND,在C点对飞行员由牛顿第二定律得FNC-mg=m,解得FNC=m+mg,故
FNA=FNB,细杆的作用力为拉力,如果v<,细杆的作用力为推力,小球在最低点Q时受到细杆的拉力作用,选项D错误。