1.控制图的预防原理
控制图是如何贯彻预防原则的呢?这可以由以下两点看出:
(1)应用控制图对生产过程不断监控,当异常因素刚一露出苗头,甚至在未造成不合格品之前就能及时被发现,在这种趋势造成不合格品之前就采取措施加以消除,起到预防的作用。
(2)在现场,更多的情况是控制图显示异常,表明异常原因已经发生,这时一定要贯彻“查出异因,采取措施,保证消除,不再出现,纳人标准。” 否则,控制图就形同虚设,不如不搞。每贯彻一次(即经过一次这样的循环)就消除一个异常因素,使它不再出现,从而起到预防的作用。
2.统计过程控制的实质
要精确地获得总体的具体数值,需要收集总体的每一个样品的数值。这对于一个无限总体或一个数量很大的有限总体来说往往是不可能的,或者是不必要的。在实际工作中,一般是从总体中随机地抽取样本,对总体参数进行统计推断。样本中含有总体的各种信息,因此样本是很宝贵的。但是如果不对样本进一步提炼、加工、整理,则总体的各种信息仍分散在样本的每个样品中。为了充分利用样本所含的各种信息,常常把样本加工成它的函数,一般将这个(或若干个)不含未知参数的样本函数称为统计量。
过程控制的实质,就是这样一个统计推断过程,所依据的统计量的形式应根据计推断的目的和应用的条件不同而有所不同。从实用和简化计算的角度来看,往往是利用样本的平均值和极差R来进行。
值得注意的是,利用样本的平均值及极差R推断总体的μ和σ时,由于总体构成的不均匀性以及抽样误差的存在,及R的变化同μ及σ的变化并不完全一样,即使在工序处于稳定状态下,μ及σ本身并无异常变化,但从工序中抽取样本的及R也是有所变化的也就是说,及R 都是随机变量,都有其特定的概率分布。它们各自的概率分布与总体分布既有一定的内在联系,又与总体分布不完全相同。在过程控制中,虽然通常依据一次抽样的结果进行一次统计推断,但由此所得出的结论却是建立在大量观测结果所遵循的统计规律的基础上的,是依样本统计量的概率分布来描述总体概率分布过程的