正态分布的概念
1定义
如果随机变量X的概率密度函数有如下形式:
则称X服从参数为μ,σ2的正态分布。
记作X~N(μ,σ2)。 www.Examw.com
当 时,正态分布称为标准正态分布,记为 ,它的密度函数用 表示,分布函数用 表示。
2 正态分布的密度函数图像
我们把正态分布的密度函数图像叫做正态曲线。
由于密度函数总是大于0的,所以密度函数的函数图像位于x轴的上方。而且由正态分布的表达式,可以发现,它的函数图像关于 对称,它的函数图像是对称的钟形曲线。因为p(x)的最大值为 ,所以正态曲线的最高点的纵坐标为 ;
(注:根据连续型随机变量密度函数的定义,钟形曲线下的面积为1。)
3参数的意义
正态分布 中,含有两个参数 与 。其中 为正态分布的均值,它是正态分布的中心,表明质量特性X在u附近取值的机会最大; 是正态分布的方差, 是正态分布的标准差。 愈大,分布愈分散,曲线低而平坦; 愈小,分布愈集中,曲线高而陡。
固定标准差 ,对不同的均值,如 ,对应的正态曲线的形状完全相同,仅位置不同。
固定均值 ,不同的标准差,如 ,对应的正态曲线的位置相同,但形状(高低与胖瘦)不同。
来源:考试网-质量工程师考试