(一)协方差分析基本思想
通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显著的影响。
例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显著影响,但分析的结论却可能相反。
再例如,分析不同的饲料对生猪增重是否产生显著差异。如果单纯分析饲料的作用,而不考虑生猪各自不同的身体条件(如初始体重不同),那么得出的结论很可能是不准确的。因为体重增重的幅度在一定程度上是包含诸如初始体重等其他因素的影响的。
(二)协方差分析的原理
协方差分析将那些人为很难控制的控制因素作为协变量,并在排除协变量对观测变量影响的条件下,分析控制变量(可控)对观测变量的作用,从而更加准确地对控制因素进行评价。
协方差分析仍然沿承方差分析的基本思想,并在分析观测变量变差时,考虑了协变量的影响,人为观测变量的变动受四个方面的影响:即控制变量的独立作用、控制变量的交互作用、协变量的作用和随机因素的作用,并在扣除协变量的影响后,再分析控制变量的影响。
方差分析中的原假设是:协变量对观测变量的线性影响是不显著的;在协变量影响扣除的条件下,控制变量各水平下观测变量的总体均值无显著差异,控制变量各水平对观测变量的效应同时为零。检验统计量仍采用F统计量,它们是各均方与随机因素引起的均方比。
(三)协方差分析的应用举例
为研究三种不同饲料对生猪体重增加的影响,将生猪随机分成三组各喂养不同的饲料,得到体重增加的数据。由于生猪体重的增加理论上会受到猪自身身体条件的影响,于是收集生猪喂养前体重的数据,作为自身身体条件的测量指标。
方差分析的应用条件为①各样本须是相互独立的随机样本;②各样本来自正态分布总体;③各总体方差相等,即方差齐性。
来源:考试网-质量工程师考试