随着科技和经济的发展、社会的进步,计量的作用和意义已日益明显。下面略举几例:
1.计量与科学技术
历史上三次大的技术革命,都充分地依靠了计量,同时也促进了计量的发展。
以蒸汽机的广泛应用为主军标志的第一次技术革命,导致以机器为主的工厂取代了以手工为基础的作坊,使生产力得以迅速提高,进而确立了资本主义的生产方式。当时,经典力学和热力学是社会科技发展的重要理论基础。在蒸汽机的研制和应用的过程中,都需要对蒸汽压力、热膨胀系数、燃料的燃烧效率、能量的转换等进行大量的计量测试。力学计量和热工计量,就是在这种情况下发展起来的。另外,机械工业的兴起,使几何量的计量得到了进一步的发展。
以电的产生和应用为基本标志的第二次技术革命,更加推动了社会的发展。欧姆定律、法拉第电磁感应定律,以及麦克斯韦电磁波理论等,为电磁现象的深入研究和广泛应用、电磁计量和无线电计量的开展,提供了重要的理论基础。例如,1821年西贝克发现的热电效应,为热电偶的诞生奠定了理论基础;而各种热电偶的研制成功,则对温度计量、电工计量、以及无线电计量等提供了一种重要手段,促进了相应科技的发展。为了实际测量地球运动的相对速率,迈克尔逊等人利用物理学的成就,研制出了迈克尔逊干涉仪,从而为长度计量提供了一个重要方法。1892年,迈克尔逊用镐光(单色红光)作为干涉仪的光源,测量了保存于巴黎的铂铱合金基准米尺的长度,获得了相当准确的结果(等于1 553 163.5个红光波长)。直至百余年后的今天,利用各种干涉仪精密测量长度,仍然是几何量计量的一种重要方法。普朗克关于能量状态的量子化假说,指出物体在辐射和吸收能量时,其带电的线性谐振子可以和周围的电磁场交换能量,以致能从一个能级跃迁到另一个能级状态,并且能量子的能量为?E=hυ(式中h——普朗克常数,υ——频率)。爱因斯坦在普朗克假说的基础上,提出了光不仅具有波动性,而且还具有粒子性,即光是以速度c运动的粒子(光子)流,其单元(光子)的能量为?E=hυ,从而说明不同频率的光子具有不同的能量。上述理论成功地解释了光电效应,成了热辐射计量的理论基础,同时也使计量开始从宏观进入微观领域。随着量子力学、核物理学的创立与发展,电离辐射计量逐渐形成。
核能及化工等的开发与应用,导致了第三次技术革命。在这个时期,科学技术和社会经济的发展更加迅速。原子能、化工、半导体、电子计算机、超导、激光、遥感、宇航等新技术的广泛应用,使计量日趋现代化,计量的宏观实物基准逐步向量子(自然)基准过渡。原子频标的建立和米的新定义的形成,有着相当重要的意义。频率和长度的精密测量,促进了现代科技的发展。比如,光速的测定、原子光谱的超精细结构的探测以及航海、航天、遥感、激光、微电子学等许多科技领域,都是以频率和长度的精密测量为重要基础的。
来源:考试网-质量工程师考试