2019年中考数学练习题:几何综合题
概述:
几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法.
>>>在线下载2019年中考数学练习题:几何综合题
典型例题精析
例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD.
(1)求证:AB2=AQ·AC:
(2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ.
分析:要证AB2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,∴只需再证明一个角相等即可.
可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等.
(2)欲证PC=PQ,
∵是具有公共端点的两条线段,
∴可证∠PQC=∠PCQ(等角对等边)
将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操.
∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系)
∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°,
∴∠PCA=∠E=90°-∠1.
做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,这样有利于做题时发生迁移,联想.
例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、DE.
(1)如果AD:AC=2:1,求AC:CE的值;
(2)在(1)的条件下,求sinA和tan∠DCE的值;
(3)当AC:CE为何值时,△DEF为正三角形?
分析:(1)根据题的结构实质上证明△ADC∽△AED,进而可求AC,CE,设CD=2x,则AC=x,易证△ADC∽△AED,
中考样题训练
1.如图⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,求证:AD·CE=DE·DF.
说明:(1)如果你经过反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路推导过程写出来(要求至少写3步).(2)在你经过说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.
2.已知,如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连结DE,DE=.
(1)求EM的长;(2)求sin∠EOB的值.
3.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O切线;
(2)若AB=6,AE=,求BD和BC的长.
4.如图:⊙O1与⊙O2外切于点P,O1O2的延长线交⊙O2于点A,AB切⊙O1于点B,交⊙O2于点C,BE是⊙O1的直径,过点B作BF⊥O1P,垂足为F,延长BF交PE于点G. (1)求证:PB2=PG·PE;(2)若PF=,tan∠A=,求:O1O2的长.
考前热身训练
1.如图,P是⊙O外一点,割线PA、PB分别与⊙O相交于A、C、B、D四点,PT切⊙O于点T,点E、F分别在PB、PA上,且PE=PT,∠PFE=∠ABP.
(1)求证:PD·PF=PC·PE;
(2)若PD=4,PC=5,AF=,求PT的长.
2.如图,BC是半圆O的直径,EC是切线,C是切点,割线EDB交半圆O于D,A是半圆O上一点,AD=DC,EC=3,BD=2.5
(1)求tan∠DCE的值;(2)求AB的长.
3.如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.
(1)求⊙A的半径;(2)求CE的长和△AFC的面积.
4.如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连结ED.
(1)求证:直线ED是⊙O的切线;
(2)连结EO交AD于点F,求证:EF=2FO.