一、选择题
1. (2014•山东烟台,第7题3分)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为( )
A. 1.5 B. 3 C. 3.5 D. 4.5
考点:等腰梯形的性质,直角三角形中30°锐角的性质,梯形及三角形的中位线.
分析: 根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.
解答:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,
∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.
∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.
∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC= 6=3,
故选:B.
点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.
2.(2014•湖南怀化,第5题,3分)如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O,则下列判断不正确的是( )
A. △ABC≌△DCB B. △AOD≌△COB C. △ABO≌△DCO D. △ADB≌△DAC
考点: 等腰梯形的性质;全等三角形的判定.
分析: 由等腰梯形ABCD中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易证得△ABC≌△DCB,△ADB≌△DAC;继而可证得∠ABO=∠DCO,则可证得△ABO≌△DCO.
解答: 解:A、∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SAS);故正确;
B、∵AD∥BC,
∴△AOD∽△COB,
∵BC>AD,
∴△AOD不全等于△COB;故错误;
C、∵△ABC≌△DCB,
∴∠ACB=∠DBC,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
在△ABO和△DCO中,
,
∴△ABO≌△DCO(AAS);故正确;
D、∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠BAD=∠CDA,
在△ADB和△DAC中,
,
∴△ADB≌△DAC(SAS),故正确.
故选B.
点评: 此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
3. (2014•山东淄博,第7题4分)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是( )
A. B. C. D.
考点: 等腰梯形的性质.
分析: 先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.
解答: 解:∵梯形ABCD是等腰梯形,
∴∠DAB+∠BAC=180°,AD∥BC,
∴∠DAP=∠ACB,∠ADB=∠ABD,
∵AB=AD=DC,
∴∠ABD=∠ADB,∠DAP=∠ACD,
∴∠DAP=∠ABD=∠DBC,
∵∠BAC=∠CDB=90°,
∴3∠ABD=90°,
∴∠ABD=30°,
在△ABP中,
∵∠ABD=30°,∠BAC=90°,
∴∠APB=60°,
∴∠DPC=60°,
∴cos∠DPC=cos60°=.
故选A.
点评: 本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.
4.(2014•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为( )
A. 2:3 B. 2:5 C. 4:9 D. :
考点: 相似三角形的判定与性质.
分析: 先求出△CBA∽△ACD,求出 = ,COS∠ACB•COS∠DAC= ,得出△ABC与△DCA的面积比= .
解答: 解:∵AD∥BC,
∴∠ACB=∠DAC
又∵∠B=∠ACD=90°,
∴△CBA∽△ACD
AB=2,DC=3,
∴COS∠ACB= = ,
COS∠DAC= =
∵△ABC与△DCA的面积比= ,
∴△ABC与△DCA的面积比= ,
故选:C.
点评: 本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比= .