考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2015年中考数学一轮复习试题11

来源:中华考试网收藏本页   【 】  [ 2015年2月10日 ]

  1.方程x2-4=0的根是(  )

  A.x=2    B.x=-2 C.x1=2,x2=-2    D.x=4

  2.用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是(  )

  A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1  D.(x-1)2=7

  3.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是(  )

  A.1 B.-1 C.0 D.无法确定

  4.若x1,x2是一元二次方程x2-2x-4=0的两个根,则此方程的根的判别式等于(  )

  A.-8     B.20    C.8    D.-20

  5.(2013年四川成都)一元二次方程x2+x-2=0的根的情况是(  )

  A.有两个不相等的实数根   B.有两个相等的实数根

  C.只有一个实数根      D.没有实数根

  6.(2012年江西南昌)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是(  )

  A.1  B.-1 C.14 D.-14

  7.(2012年上海)如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,那么c的取值范围是________.

  8.(2013年山东青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程__________________.

  9.解方程: (x-3)2+4x(x-3)=0.

  B级 中等题

  10.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是__________.

  11.(2013年江苏常州)已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a=____________.

  12.(2013年广西玉林)已知关于x的方程x2+x+n=0有两个实数根-2,m.求m,n的值.

  13.(2013年江苏淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?

  C级 拔尖题

  14.(2012年天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:

  ①x1=2,x2=3;②m>-14;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).

  其中,正确结论的个数是(  )

  A.0个 B.1个  C.2个 D.3个

  15.(2013年福建厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-274=0,x2+6x-27=0, x2+4x+4=0都是“偶系二次方程”.

  (1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;

  (2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.

  一元二次方程

  1.C 2.B 3.B 4.B 5.A 6.B

  7.c>9 8. 40(1+x)2=48.4

  9.解:(x-3)2+4x(x-3)=0,

  因式分解,得(x-3)(x-3+4x)=0,

  整理,得(x-3)(5x-3)=0.

  于是得x-3=0或5x-3=0.

  解得x1=3,x2=35.

  10.7 11.-2或1

  12.解:∵关于x的方程x2+x+n=0有两个实数根-2,m,

  ∴-2m=n,-2+m=-1,解得m=1,n=-2,

  即m,n的值分别是1,-2.

  13.解:设购买了x件这种服装,根据题意,得

  [80-2(x-10)]x=1200,

  解得x1=20,x2=30.

  当x=30时,80-2(30-10)=40<50,不合题意,舍去.

  答:她购买了20件这种服装.

  14.C

  15.解:(1)不是.理由如下:

  解方程x2+x-12=0,得x1=-4,x2=3.

  |x1|+|x2|=4+3=2×|3.5|.

  ∵3.5不是整数,

  ∴方程x2+x-12=0不是“偶系二次方程”.

  (2)存在.理由如下:

  ∵方程x2-6x-27=0,x2+6x-27=0是“偶系二次方程”,

  ∴ 假设c=mb2+n.

  当 b=-6,c=-27时,有-27=36m+n.

  ∵x2=0是“偶系二次方程”,

  ∴n=0,m=-34. 即有c=-34b2.

  又∵x2+3x-274=0也是“偶系二次方程”,

  当b=3时,c=-34×32=-274.

  ∴可设c=-34b2.

  对任意一个整数b,当c=-34b2时,

  ∵Δ=b2-4c=4b2.

  ∴ x=-b±2b2 .∴ x1=-32b,x2=12b.

  ∴|x1|+|x2|=32|b|+12|b|=2|b|.

  ∵b是整数,∴对任意一个整数b,当c=-34b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.

我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照