1.(2013年广西柳州)下列四个图中,∠x是圆周角的是( )
A50° B70° C 120°D90°
2.(2013年福建三明)如图5114,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是( )
A.50° B.55° C.60° D.70°
3.(2013年浙江绍兴)绍兴是著名的桥乡,如图5115,圆拱桥的拱顶到水面的距离CD为8 m,桥拱半径OC为5 m,则水面宽AB为( )
A. 4 m B. 5 m C. 6 m D. 8 m
4.(2012年山东泰安)如图5116,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )
A.CM=DM B. = C.∠ACD=∠ADC D.OM=MD
5.(2013年云南红河州)如图5117,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )
A.AD=DC B. ∠ADB= ∠DAB C.∠ADB=∠ACB D.∠DAB=∠CBA
6.(2013年海南)如图5118,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是( )
A.1 B.2 C.3 D.5
7.(2013年贵州遵义)如图5119,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=____________.
8.(2013年青海西宁)如图5120,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE∶BE=1∶3,则AB=__________.
9.如图5121,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________°.
10.如图5122,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD,求∠D的度数.
11.(2012年湖南长沙)如图5123,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°.
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
B级 中等题
12.如图5124,A,B是⊙O上两点.若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
图5124
A.2r B.3r C.r D.2r
13.(2012年贵州黔西南州)如图5125,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧 的中点,连接PA,PB,PC,PD.当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.
C级 拔尖题
14.(2013年辽宁盘锦)如图5126,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为______________.
1.C 2.B 3.D 4.D 5.D 6.A 7.52°
8.4 3 9.60
10.解:如图23,连接BD.
∵AB是⊙O的直径,∴BD⊥AD.
又∵CF⊥AD,∴BD∥CF.∴∠BDC=∠C.
又∵∠BDC=12∠BOC,∴∠C=12∠BOC.
∵AB⊥CD,∴∠C=30°,∴∠ADC=60°.
图23 图24
11.解:(1)∵∠BAC=∠APC=60°,
又∵∠APC=∠ABC,∴∠ABC=60°.
∵∠ACB=180°-∠BAC-∠ABC=60°.
∴△ABC是等边三角形.
(2)如图24,连接OB.
∵△ABC为等边三角形,⊙O为其外接圆,
∴O为△ABC的外心.∴BO平分∠ABC.
∴∠OBD=30°,∴OD=12OB=12×8=4.
12.B
13.解:当BD=4时,△PAD是以AD为底边的等腰三角形.理由如下:
∵P是优弧 的中点,
∴ = ,即PB=PC.
又∵BD=AC=4,∠PBD=∠PCA,
∴△PBD≌△PCA(SAS),∴PA=PD.
∴△PAD是以AD为底边的等腰三角形.
14.(2 2,0)或(-2 2,0) 解析:如图25,过点M作MC⊥l,垂足为C,
图25
∵△MAB是等腰直角三角形,∴MA=MB.
∴∠BAM=∠ABM=45°.
∵MC⊥直线l,∴∠BAM=∠CMA=45°.
∴AC=CM.
Rt△ACM中,即AC2+CM2=AM2,
∵2CM2=4,CM=2.
Rt△OCM中,∠COM=30°,∴CM=12OM.
∴OM=2CM=2 2.∴M(2 2,0).
根据对称性,在负半轴的点M(-2 2,0)也满足条件.
故M(2 2,0)或(-2 2,0).