或许以后你们将会感慨,整个初中是我们人生中最应该享受的时光,并不是因为我们多么自由,多么富有,而是因为此时我们年轻,对于朋友和同学来说我们拥有彼此,这种日子仅此三年。中考复习的每一天,尽管学习很辛苦,做题很疲惫,但是我们知道我们的目标,我们也知道会有老师帮助我们尽可能的实现它。
所以,每个人都不是自己在奋战,每天的辛苦复习中,我们有老师,有同学,拥有朋友和家人,每个人都会挺你。中考,没有人让你去下火海,没有人逼你说拿命来,复习仅仅是辛苦,但是不会觉得恐怖。
我们想想和同学们一起埋头苦写的日子,互相追赶着彼此的进度,虽然紧张,但是课间依然说笑如常。彼此之间不应该是竞争者,而是队友。一套卷子发下来争先恐后的做着,生怕比别人落下,生怕比别人少做,而后对于某些题大家又开始互相讲解,互相调侃着。我们希望不断地通过做题来证明我们的实力,找到那种被别人羡慕的成就感。初三的生活就是这样,我们恨它因为他让我们不得不忙碌着,我们爱它,因为他让我们忙碌并在一起。
好啦,言归正传,对于我们来说现在满打满算,也只有4个月不到的时间能够用来复习,再细细算一下,直到一摸前,我们只有2个月的时间了。这段时间,转瞬即逝,但是如果能够把握好对于我们提高成绩还是可以有很大帮助的。
在此阶段同学们复习时需要注意两点,第一是方法,第二是心态。
先说方法,春季的复习,基础知识永远是我们不得不重视的。
第一、基础知识系统化。
看到一道题,我们要知道它在考什么,我们要明确的知道每一个知识点来源于那一部分知识。牢记每一部分知识的重点,难点以及易错点能够大大降低我们的出错率。就像看到分式方程一定要想到验根,看到一元二次方程一定要想到算一下△,看到等腰三角形一定要注意分类讨论并且想到三线合一。
初中学过的所有知识都有着他最基础的一部分以及较难掌握的一部分,这就对应着我们中考要求中ABC三类不同的要求,我们对于每一部分知识都要做到心中有数,尤其是几何的模型,例如圆与切线当中的单切线,双切线以及三切线,相似当中的非垂直相似,双垂直相似以及三垂直相似模型,我们都要了然于胸,这才能使得我们做题的思路来得更快更清晰。
再者,对于构造等腰三角形以及直角三角形来说,经常需要讨论谁是腰谁是底边,哪个是直角边哪个是斜边,这里系统化的方法就变得特别的重要了。为了保证讨论的情况不丢不落,必须要按照一定的原则进行划分,否则拼拼凑凑就有可能有丢的有重复的。因此,我们一定要学会对于基本题型的总结,对于基本知识点的归纳,以保证我们做题的顺畅与严谨。
第二、基础知识全面化。
为什么这个重要,因为全面化的知识能给我们提供更多的思路和更宽的解题空间。比如说三角形中重要的线段,很多同学都会说角平分线,中线和高,那么实际上还有一条非常重要的线段——中位线。这条线段尽管不是和前三条一起讲的但是在求解三角形的问题当中经常会用到,那么如果我们做题当中意识不到三角形中位线的问题,那么很可能就做不出辅助线。
因此将知识点规整在一个整体当中是非常有利于我们进行联想和应用的。再比如,求解线段长,都能用到什么方法,大部分同学都能说出很多种,例如勾股定理,相似三角形,全等三角形,三角函数,特殊三角形的性质等等,但是诸如面积法,以及构造平行四边形等方法却经常被遗忘。这就是归纳方法的不彻底,而后者往往是解决综合题中有可能会用到的方法,所以归纳的彻底相当的重要。
再例如证明题中推导角度的问题,除了大家一直比较敏感的三线八角,在我们学过相似和全等之后,便经常习惯于用这几种方法求解角与角的关系,而事实上还有两个非常重要的方法最容易被忽略,一是“三角形内角和=180°”二是“三角形的一个外角等于与他不相邻的两个内角之和”,干瞪眼就是看不出来这是外角的同学大有人在,所以,在学过的知识逐渐变得丰富之后,我们要善于整理,把学过的每一个知识点整理到一起,串成线,吊起来一串圆,要能够知道里面一共有多少个定理,多少种提醒常见的题型;吊起一串直角,要想到什么地方能够见到直角,直角三角形有什么性质和作用。所以大家要全面总结每一部分考点涉及到的知识,每一种知识涉及到的解题方法。这样才能保证我们思路开阔,方法灵活,不至于说看一道题能想出来的方法死活做不出来,应该用到的方法死活想不到。
第三、基础知识深度化。
这部分就关系到我们后面的综合题了。深度化,也就是对于基础知识的应用与迁移。中考是没有难题的,我们所说的难题只不过是将许多简单的知识点有机的结合在一起,或稍作变形,或稍加隐藏。那么这部分就需要大家能够灵活并且熟练的应用我们的基础知识进行解答。灵活运用的前提,就是对于知识点认识的深刻。例如两边之和大于第三边,两边之差小于第三边。
很多同学只能想到用它来求解范围问题,但事实上,在综合题中,这部分知识更多的用来求解线段关系以及最值问题。如果能有这种认识,那么在综合题中就能够自然而然的想到平移线段构造三角形或者平行四边形。再比如,二次函数的图像与任意一条直线的交点,不仅表示着两个图像相交,同时表示着他们所组成的二元一次方程有实根。