函数是高等数学的研究对象,函数的特性包括分析特性和几何特性,分析特性包括函数的极限、函数的连续与间断、函数的导数、函数的积分等,几何特性包括曲线的图形、曲线的切线和法线、曲线的凹凸性、曲线所围成的面积等,其中曲线的凹凸性是反映曲线的弯曲方向的,如果曲线向下弯曲,则称之为凸,如果曲线向上弯曲,则称之为凹,如果曲线在某点的弯曲方向发生改变,则称该点为拐点,拐点是考研数学的一点考点,如何判别曲线的拐点,以下是2018考研数学复习:曲线拐点的判别方法分析总结,供各位考生复习参考。
一、拐点的定义
在前面的分析和例题中,我们介绍了曲线拐点的三种判别方法,一种是根据几何图形的弯曲方向是否改变来进行判别,一种是根据函数的二阶导数的符号在某点左右是否改变来判别,第三种方法是根据三阶导数在某点不为零来判别,这三种方法用得较多的是第二种,但在某些情况下用另外两种可能更方便,同学们在实际解题时要灵活运用。
一级建造师二级建造师消防工程师造价工程师土建职称房地产经纪人公路检测工程师建筑八大员注册建筑师二级造价师监理工程师咨询工程师房地产估价师 城乡规划师结构工程师岩土工程师安全工程师设备监理师环境影响评价土地登记代理公路造价师公路监理师化工工程师暖通工程师给排水工程师计量工程师