回到之前的配方式,(x+b/2a)^2=(b^2-4ac)/(4a^2)。在实数域内,等式左边表示是一个实数的平方,我们都知道一个实数的平方一定是一个非负数,但是等式右边关于系数a、b、c的式子算出来的数并不一定是非负数,如果是一个负数的话,该等式在实数域内是不可能成立的,意味着该方程无根;如果等式右边是零的话,就意味着x+b/2a只能为零,该方程只有一个根x=-b/2a(或者说两个相等的实数根);若等式右边是一个正数,x+b/2a是可以等于两个不同的值的,即该方程有两个根。上述一直在讨论根的个数的问题,也就是一元二次方程的根的个数是需要由等式右边(b^2-4ac)/(4a^2)的正负来决定的。
此时,又出现了另外一个问题,初中数学中根的判别式并不是这个分式,而只有该分式的分子,即判别式=b^2-4ac,这又是为何呢?不难发现,我们得到的这个分式的分母4a^2在a不等于0的时候一定是大于零的数,因此整个分式的正负直接由其分子决定,即判别式只需等于b^2-4ac即可判定一元二次方程根的个数。这就跟我们初中的记忆重叠在一起了,根的判别式b^2-4ac大于零时,方程有两个不同的实数根;等于零时,方程有两个相等的实数根;小于零时,方程无实数根。当然,这只是在实数域内讨论问题,若将数域扩充到复数域,这将意味着小于零的时候,方程是有两个虚根的。管综数学基础的考试数域是实数域,因此不需要考虑虚根的情况。
不仅仅如此,我们知道了公式是怎么来的,知道它怎么用,还需要研究该公式能有什么样的变形,将其扩展,使其应用的更广泛。
当方程有两个不相等的实数根时,如果对两根进行加法运算,将会得到一个很重要的数学式子,即两根之和=-b/a;另外还可以对其进行乘法运算,就得到另外一个重要式子即两根之积=c/a。这两个等式都在讨论根与系数的关系,也就是我们在初中学习的韦达定理。那我们就可以注意到,韦达定理是对两根进行求和、求乘积的运算,其前提必定是方程必须有根,因此大前提就是用韦达定理,方程的判别式必须大于等于零。那么,在满足这个前提条件时,韦达定理有着怎样的应用呢?
韦达定理既是将方程的根和方程的系数结合在一起,那么在根与系数关系判定中就起到很大的作用。它的第一个应用就是求值问题,当已知条件是一个一元二次方程,所求代数式比较复杂,且是关于两根的,就可以将所求代数式转化为与两根之和、两根之积有关系的代数式,直接利用韦达定理整体带入求值即可;第二个应用就是根的正负问题了,在判别式大于等于零的前提下,利用两根之和、两根之积的正负来确定两根的正负,此方法有效避免了解分式不等式的繁琐步骤,大大提升解题速度。这也是管综数学基础考试中考查的重点之一。
现在知道了方程的求根推导过程,也知道了其变形式韦达定理是怎样得到的,就不必刻意去记忆此公式了。如果只是单纯记住公式的话,应用的灵活度方面将会有很大的局限性了。
总之,大家在学习数学知识时,不仅要知其然,更要知其所以然,对其来龙去脉了解清楚,在理解过程中不仅仅能达到记忆的目的,更能灵活应用,这才是数学的学习王道。
一级建造师二级建造师消防工程师造价工程师土建职称房地产经纪人公路检测工程师建筑八大员注册建筑师二级造价师监理工程师咨询工程师房地产估价师 城乡规划师结构工程师岩土工程师安全工程师设备监理师环境影响评价土地登记代理公路造价师公路监理师化工工程师暖通工程师给排水工程师计量工程师