高等数学中,求函数的极限是贯穿始终的,而有一类型的求极限的题目,需要从左极限和右极限入手,即无法直接求极限,只能先求完左极限,再求完右极限,才能最终判断函数的极限是否存在。当然了,对于具体的求极限题目,左右极限一般是相等的,不然就没有极限。那么在什么情况下需要求左右极限呢?
同学们仔细想想,为什么要分开求呢?一次求完,不是更好吗?这是因为不能一次求完,因为左右函数的表达式不一样。在这里,李老师帮大家归结为三种情况:第一种,也是最常见的,就是某点的左右邻域内,函数的表达式不一致,就是通常所说的分段函数。判断分段点处是否存在极限,以及是否连续,是否可导等等,就需要分左右来求解。这种情况是最自然的情况,同学们一般都会求。第二种情况是表达式里含有绝对值,实际上含绝对值的函数可以归结为分段函数,因为函数在零点的左右邻域内的表达式不一致。这一点,也是比较常见的,但部分同学不知道如何处理。其实,凡是涉及到绝对值的表达式,通常的处理手段是,不管三七二十一,先把绝对值符号去掉再说。在求极限的时候,分别求左极限和右极限,就是为了去绝对值。
第三种情况,由于很重要,也是特别注意的地方,就单独写成一段好了。第三点就是某些特殊的极限需要分左右:
极限来求解。当然,分成两个极限的尝试也没有错,但是如果说这两个极限都不存在,然后下结论原题的极限也不存在,就错了。这是因为各自的极限不存在,但和的极限可能存在。建议大家在应对这类型的极限时,千万要注意以上三种特殊的左右极限。
一级建造师二级建造师消防工程师造价工程师土建职称房地产经纪人公路检测工程师建筑八大员注册建筑师二级造价师监理工程师咨询工程师房地产估价师 城乡规划师结构工程师岩土工程师安全工程师设备监理师环境影响评价土地登记代理公路造价师公路监理师化工工程师暖通工程师给排水工程师计量工程师