考研

各地资讯
当前位置:华课网校 >> 考研 >> 考研数学 >> 数学指导 >> 文章内容

考研数学:线性代数方程组需掌握的知识点

来源:华课网校  [2016年1月19日]  【

  线性代数的核心就是如何解方程组,所以本部分中线性方程组什么时候有解,是有唯一解还是有无穷多解,如何求解是复习的重点,通常在考试中会在本部分出一道大题。而向量的线性相关性问题一般转化为线性方程组有无解的问题,所以可放在一起复习。

  ·其中我们应当掌握

  1、非齐次线性方程组解的结构及通解;

  2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;

  3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;

  4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;

  5、向量、向量的线性组合与线性表示的概念;

  6、用初等行变换求解线性方程组的方法;

  7、基变换和坐标变换公式,过渡矩阵。(数一)

  8、向量空间、子空间、基底、维数、坐标等概念;(数一)

  9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;

  10、向量组的极大线性无关组和向量组的秩的概念和求解;

  11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;

  矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。

  ·其中我们应当掌握

  1、规范正交基、正交矩阵的概念以及它们的性质;

  2、内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法;

  3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;

  4、实对称矩阵的特征值和特征向量的性质;

  5、相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法;

  6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;

  7、正定二次型、正定矩阵的概念和判别法。

  8、正交变换化二次型为标准形,配方法化二次型为标准形;

  注重基础,是成功的必要条件。在前期复习中,基础就成了第一要务。在这个复习基础的这个阶段中,考生可以对照教材把知识点系统梳理,逐字逐句、逐章逐节对概念、原理、方法全面深入复习,同时,还应注意基础概念的背景和各个知识点的相互关系,一定要先把所有的公式、定理、定义记牢,然后再做一些基础题进行巩固。

责编:zhanglu

报考指南

  • 学历考试
  • 会计考试
  • 建筑工程
  • 职业资格
  • 医药考试
  • 外语考试
  • 外贸考试
  • 计算机类