(一)1.已知函数f(x)=2sin ωx(0<ω<1)在[0,]上的最大值为,当把f(x)的图象上的所有点向右平移φ(0<φ<)个单位后,得到图象对应函数g(x)的图象关于直线x=对称.
(1)求函数g(x)的解析式;
(2)在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.
解 (1)由题意知,函数f(x)在区间[0,]上单调递增,
∴2sin =,
∴=2kπ+,k∈Z,
得ω=4k+,k∈Z.
经验证当k=0时满足题意,故求得ω=,
∴g(x)=2sin(x-),
故×-φ=kπ+,k∈Z,
∴φ=-2kπ+,k∈Z,又0<φ<,
∴φ=.故g(x)=2sin(-).
(2)根据题意,得-=kπ,k∈Z,
∴x=2kπ+,k∈Z,∴C=.
又c=4,得16=a2+b2-2abcos ,
∴a2+b2=16+ab≥2ab,
∴ab≤32+16,
∴S=absin C=ab≤8+4,
∴S的最大值为8+4.
2.四棱锥S—ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SB=SC=.
(1)设平面SCD与平面SAB的交线为l,求证:l∥AB;
(2)求证:SA⊥BC;
(3)求直线SD与平面SAB所成角的正弦值.
(1)证明 ∵底面ABCD为平行四边形,∴AB∥CD.
∵AB平面SCD,CD平面SCD,
∴AB∥平面SCD,
又∵平面SCD与平面SAB的交线为l,
∴l∥AB.
(2)证明 连结AC.
∵∠ABC=45°,AB=2,BC=2,
由余弦定理得AC=2,
∴AC=AB.
取BC中点G,连结SG,AG,则AG⊥BC.
∵SB=SC,∴SG⊥BC,
∵SG∩AG=G,∴BC⊥平面SAG,
∴BC⊥SA.
(3)解 如图,以射线OA为x轴,以射线OB为y轴,以射线OS为z轴,以O为原点,建立空间直角坐标系O-xyz,
则A(,0,0),B(0,,0),S(0,0,1),D(,-2,0).
∴=(,-2,0)-(0,0,1)=(,-2,-1),
=(,0,0)-(0,0,1)=(,0,-1),
=(,0,0)-(0,,0)=(,-,0).
设平面SAB法向量为n=(x,y,z),
有
令x=1,则y=1,z=,n=(1,1,),
cos〈n,〉= ==-.
∴直线SD与平面SAB所成角的正弦值为.
3.已知数列{an}的前n项和为Sn,且Sn=2n2+n(n∈N*),数列{an}满足an=4log2bn+3(n∈N*).
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
解 (1)由Sn=2n2+n,得a1=S1=3;
当n≥2时,an=Sn-Sn-1=4n-1.
又a1=3也适合上式.
所以an=4n-1,n∈N*,
由4n-1=an=4log2bn+3,得bn=2n-1,n∈N*.
(2)由(1)知anbn=(4n-1)2n-1,n∈N*.
所以Tn=3+7×2+11×22+…+(4n-1)2n-1,
所以2Tn=3×2+7×22+…+(4n-5)2n-1+(4n-1)2n,
所以2Tn-Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]
=(4n-5)2n+5.
故Tn=(4n-5)2n+5,n∈N*.