解答题
1.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;
(2)若a>0,且a≠0,即a(x+1)(x-2)>0.
当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};当a<0时,不等式F(x)>0的解集为{x|-10,且00.
f(x)-m<0,即f(x)4的解集为{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0.
解 (1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.
由根与系数的关系,得解得
(2)由(1)知不等式ax2-(ac+b)x+bc<0为x2-(2+c)x+2c<0,即(x-2)(x-c)<0.
当c>2时,不等式(x-2)(x-c)<0的解集为{x|22时,不等式的解集为{x|20,
即Δ=(m-2)2-4(m-1)(-1)>0,得m2>0,
所以m≠1且m≠0.
(2)在m≠0且m≠1的条件下,
因为+==m-2,
所以+=2-
=(m-2)2+2(m-1)≤2.
得m2-2m≤0,所以0≤m≤2.
所以m的取值范围是{m|0