三、解答题:本大题共6小题,满分80分,解答需写出文字说明。证明过程和演算步骤。
16.(本小题满分12分)
已知函数f(x)= cos(x- ),XER。
(1) 求f(- )的值;
(2) 若cosθ= ,θE( ,2π),求f(2θ+ )。
17.(本小题满分12分)
某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。
(1) 根据茎叶图计算样本均值;
(2) 日加工零件个数大于样本均值的工人为优秀工人。根据茎叶图推断该车间12名工人中有几名优秀工人?
(3) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率
18(本小题满分4分)
如图5,在等腰直角三角形ABC中,∠A =900 BC=6,D,E分别是AC,AB上的点,CD=BE=
,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3
(1) 证明:A’O⊥平面BCDE;
(2) 求二面角A’-CD-B的平面角的余弦值
19.(本小题满分14分)
设数列{an}的前n项和为Sn,已知a1=1, =an+1- n2 – n - ,n∈N·.
(1)求a2的值
(2)求数列{an}的通项公式a1
(3) 证明:对一切正整数n,有 +… <
20.(本小题满分14分)
已知抛物线c的顶点为原点,其焦点F(0,c)(c>0)到直线L:x-y-2=0的距离为 . 设P为直线L上的点,过点P做抛物线C的两条切线PA,PB,其中A,B为切点。
(1) 求抛物线C的方程;
(2) 当点P()x0,y0)为直线L上的定点时,求直线AB的方程;
(3) 当点P在直线L上移动时,求|AF|·|BF|的最小值
21.(本小题满分14分)
设函数f(x)=(x-1)ex-kx2(k∈R).
(1) 当k=1时,求函数f(x)的单调区间;
(2) 当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.