单独报考
当前位置:中华考试网 >> 高考 >> 全国高考 >> 全国高考数学模拟题 >> 2017年高考数学提分专项练习及答案(2)

2017年高考数学提分专项练习及答案(2)_第2页

中华考试网  2016-10-12  【

  三、解答题

  11.

  如图,四边形ABCD与A′ABB′都是正方形,点E是A′A的中点,A′A平面ABCD.

  (1)求证:A′C平面BDE;

  (2)求证:平面A′AC平面BDE.

  解题探究:第一问通过三角形的中位线证明出线线平行,从而证明出线面平行;第二问由A′A与平面ABCD垂直得到线线垂直,再由线线垂直证明出BD与平面A′AC垂直,从而得到平面与平面垂直.

  解析:(1)设AC交BD于M,连接ME.

  四边形ABCD是正方形,

  M为AC的中点.

  又 E为A′A的中点,

  ME为A′AC的中位线,

  ME∥A′C.

  又 ME⊂平面BDE,

  A′C⊄平面BDE,

  A′C∥平面BDE.

  (2)∵ 四边形ABCD为正方形, BD⊥AC.

  ∵ A′A⊥平面ABCD,BD平面ABCD,

  A′A⊥BD.

  又AC∩A′A=A, BD⊥平面A′AC.

  BD⊂平面BDE,

  平面A′AC平面BDE.

  12.

  如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.

  (1)求证:D1CAC1;

  (2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.

  命题立意:本题主要考查空间几何体中的平行与垂直的判定,考查考生的空间想象能力和推理论证能力.通过已知条件中的线线垂直关系和线面垂直的判定证明线面垂直,从而证明线线的垂直关系.并通过线段的长度关系,借助题目中线段的中点和三角形的中位线寻找出线线平行,证明出线面的平行关系.解决本题的关键是学会作图、转化、构造.

  解析:(1)在直四棱柱ABCD-A1B1C1D1中,连接C1D, DC=DD1,

  四边形DCC1D1是正方形,

  DC1⊥D1C.

  又ADDC,ADDD1,DC∩DD1=D,

  AD⊥平面DCC1D1,

  又D1C平面DCC1D1,

  AD⊥D1C.

  ∵ AD⊂平面ADC1,DC1平面ADC1,

  且AD∩DC1=D,

  D1C⊥平面ADC1,

  又AC1平面ADC1,

  D1C⊥AC1.

  (1)题图

  (2)题图

  (2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN.

  平面AD1E∩平面A1BD=MN,

  要使D1E平面A1BD,

  可使MND1E,又M是AD1的中点,

  则N是AE的中点.

  又易知ABN≌△EDN,

  AB=DE.

  即E是DC的中点.

  综上所述,当E是DC的中点时,可使D1E平面A1BD.

  13.

  已知直三棱柱ABC-A′B′C′满足BAC=90°,AB=AC=AA′=2,点M,N分别为A′B和B′C′的中点.

  (1)证明:MN平面A′ACC′;

  (2)求三棱锥C-MNB的体积.

  命题立意:本题主要考查空间线面位置关系、三棱锥的体积等基础知识.意在考查考生的空间想象能力、推理论证能力和运算求解能力.

  解析:(1)证明:如图,连接AB′,AC′,

  四边形ABB′A′为矩形,M为A′B的中点,

  AB′与A′B交于点M,且M为AB′的中点,又点N为B′C′的中点.

  MN∥AC′.

  又MN平面A′ACC′且AC′平面A′ACC′,

  MN∥平面A′ACC′.

  (2)由图可知VC-MNB=VM-BCN,

  BAC=90°, BC==2,

  又三棱柱ABC-A′B′C′为直三棱柱,且AA′=4,

  S△BCN=×2×4=4.

  A′B′=A′C′=2,BAC=90°,点N为B′C′的中点,

  A′N⊥B′C′,A′N=.

  又BB′⊥平面A′B′C′,

  A′N⊥BB′,

  A′N⊥平面BCN.

  又M为A′B的中点,

  M到平面BCN的距离为,

  VC-MNB=VM-BCN=×4×=.

  14.

  如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等边三角形,BD=2AD=8,AB=2DC=4.

  (1)设M是PC上的一点,证明:平面MBD平面PAD;

  (2)求四棱锥P-ABCD的体积.

  命题立意:本题主要考查线面垂直的判定定理、面面垂直的判定定理与性质定理以及棱锥的体积的计算等,意在考查考生的逻辑推理能力与计算能力,考查化归与转化思想.

  解析:(1)证明:在ABD中,因为AD=4,BD=8,AB=4,所以AD2+BD2=AB2.

  故ADBD.

  又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

  所以BD平面PAD,

  又BD平面MBD,

  所以平面MBD平面PAD.

  (2)过点P作OPAD交AD于点O,

  因为平面PAD平面ABCD,

  所以PO平面ABCD.

  因此PO为四棱锥P-ABCD的高.

  又PAD是边长为4的等边三角形,

  所以PO=×4=2.

  在四边形ABCD中,ABDC,AB=2DC,

  所以四边形ABCD是梯形.

  在Rt△ADB中,斜边AB上的高为=,此即为梯形ABCD的高.

  所以四边形ABCD的面积S=×=24.

  故四棱锥P-ABCD的体积VP-ABCD=×24×2=16.

12
纠错评论责编:tanhuifang
相关推荐
热点推荐»