单独报考
当前位置:中华考试网 >> 高考 >> 北京高考 >> 北京高考数学模拟题 >> 2015年北京高考数学章节专题7

2015年北京高考数学章节专题7

中华考试网  2015-03-03  【

  主讲:一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值是(  )

  A.13 B.24

  C. 15 D.28

  已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.

  (1)求X的分布列.

  (2)求X的数学期望E(X).

  第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.

  (Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

  (Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.

  14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

  编号 1 2 3 4 5 169 178 166 175 180 75 80 77 70 81 (1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;

  (2)当产品中的微量元素x,y满足x≥175且y≥75时

  (3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).

  从某小组的5名女生和4名男生中任选3人去参加一项公益活动.

  (1)求所选3人中恰有一名男生的概率;

  (2)求所选3人中男生人数ξ的分布列.

  袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数ξ的概率分布列. 一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.

  (1)求在一次抽检后,设备不需要调整的概率;

  (2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.

  (1)求甲答对试题数ξ的概率分布;

  (2)求甲、乙两人至少有一人入选的概率.如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为ξ,则P(ξ≥8)=________.

  某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.

  () 随机选取1件产品,求能够通过检测的概率;

  () 随机选取3件产品,其中一等品的件数记为,求的分布列;

  () 随机选取3件产品,求这三件产品都不能通过检测的概率.

  课后练习C.

  详解:

  {X=4}表示从盒中取了2个旧球,1个新球,

  故P(X=4)== .

  (1)X的分布列为:

  X 3 4 5 6 P (2).

  详解:(1)X=3,4,5,6,

  ,

  ,

  ,

  ,

  所以X的分布列为:

  X 3 4 5 6 P (2)X的数学期望E(X)=.(Ⅰ).

  (Ⅱ)的分布列如下:

  期望为1.

  详解: (Ⅰ)根据茎叶图,有“高个子”12人,“非高个子”18人,

  用分层抽样的方法,每个人被抽中的概率是,

  所以选中的“高个子”有人,“非高个子”有人.

  用事件表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,

  则 .……5分 因此,至少有一人是“高个子”的概率是.

  (Ⅱ)依题意,的取值为.

  ,   ,

  , .

  因此,的分布列如下:

  .

  (1)35();(2)14();

  0 1 2 P 数学期望E(

  详解:(1)由题意知,抽取比例为,则

  (2)由表格知乙厂生产的优等品为2号和5号,所占比例为.由此估计乙厂生产的优等品的数量为(件);

  (3)由(2)知2号和5号产品为优等品,其余3件为非优等品.的取值为0,1,2.

  P(=0)=, P(=1)=, P(=2)=.

  从而分布列为

  0 1 2 P 数学期望E((1) .

  (2)

  详解:(1)所选3人中恰有一名男生的概率P==.

  (2)ξ的可能取值为0,1,2,3.

  P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,

  P(ξ=3)==.

  ∴ξ的分布列为

  详解:得分ξ的取值为-3,-2,-1,0,1,2,3.

  ξ=-3时表示取得3个球均为红球,

  ∴P(ξ=-3)==;

  ξ=-2时表示取得2个红球和1个黑球,

  ∴P(ξ=-2)==;

  ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球,

  ∴P(ξ=-1)==;

  ξ=0时表示取得3个黑球或1红、1黑、1白,

  ∴P(ξ=0)==;

  ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,

  ∴P(ξ=1)==;

  ξ=2时表示取得2个白球和1个黑球,

  ∴P(ξ=2)==;

  ξ=3时表示取得3个白球,

  ∴P(ξ=3)==;

  ∴所求概率分布列为

  (1) 0.9.

  (2)

  ξ 0 1 2 3 p 0.729 0.243 0.027 0.001

  详解:

  (1)设Ai表示事件“在一次抽检中抽到的第i件产品为A类品”,

  i=1,2.

  Bi表示事件“在一次抽检中抽到的第i件产品为B类品”,

  i=1,2.

  C表示事件“一次抽检后,设备不需要调整”.

  则C=A1·A2+A1·B2+B1·A2.

  由已知P(Ai)=0.9,P(Bi)=0.05 i=1, 2.

  所以,所求的概率为

  P(C)=P(A1·A2)+P(A1·B2)+P(B1·A2)

  =0.92+2×0.9×0.05=0.9.

  (2)由(1)知一次抽检后,设备需要调整的概率为

  p=P()=1-0.9=0.1,依题意知ξ~B(3,0.1),ξ的分布列为

  ξ 0 1 2 3 p 0.729 0.243 0.027 0.001

  (1)

  ξ 0 1 2 3 P (2)

  详解:

  (1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则

  P(ξ=0)==,P(ξ=1)==,

  P(ξ=2)==,P(ξ=3)==,

  其分布列如下:

  ξ 0 1 2 3 P (2)设甲、乙两人考试合格的事件分别为A、B,则

  P(A)===, P(B)===.

  法一:因为事件A、B相互独立,

  甲、乙两人考试均不合格的概率为

  P=P·P

  ==,

  甲、乙两人至少有一人考试合格的概率为

  P=1-P=1-=.

  答:甲、乙两人至少有一人考试合格的概率为.

  法二:甲、乙两人至少有一个考试合格的概率为

  P=P+P+P

  =×+×+×=.

  答:甲、乙两人至少有一人考试合格的概率为.

  详解:由已知ξ的取值为7,8,9,10,

  P(ξ=7)==,

  P (ξ=8)==,

  P(ξ=9)==,

  P(ξ=10)==,

  ξ的概率分布列为

  ξ 7 8 9 10 P P(ξ≥8)=P(ξ=8)+P(ξ=9)+P(ξ=10)=++=.(Ⅰ)

  (Ⅱ)

  0 1 2 3

  (Ⅲ) .

  详解: ()设随机选取一件产品,能够通过检测的事件为

  事件等于事件 “选取一等品都通过检测或者是选取二等品通过检测”

  () 由题可知可能取值为0,1,2,3.

  ,,

  ,.

  0 1 2 3 故的分布列为

  ()设随机选取3件产品都不能通过检测的事件为

  事件等于事件“随机选取3件产品都是二等品且都不能通过检测”

  所以,.

纠错评论责编:xiejinyan
相关推荐
热点推荐»