您现在的位置:质量工程师 > 质量工程师初级 > 初级理论 > 文章内容

2010年质量职业资格考试辅导:专业基础知识讲义(32)

考试网(www.examw.com)  2010年3月11日  
0

  事件的概率

  随机事件的发生由偶然性,但是随机事件发生的可能性有大小之分,是可以度量的。实际上,通常人们关心事件发生的可能性大小。例如:

  (1) 抛一枚硬币,出现正面和反面的可能性各为 。

  (2) 购买彩票的中奖机会有多少呢?等等一个事件发生A发生的可能性大小通常用P(A)表示。概率是一个介于0和1之间的数。概率越大,事件发生的可能性越大;概率越小,事件发生的可能性越小。

  随机变量及其分布

  1 随机变量

  表示随机现象结果的变量称为随机变量。常用大写字母X, Y, Z等表示随机变量,它们的取值用小写字母 等表示。

  常见的有两种随机变量。

  2 随机变量的分布

  (1) 离散型随机变量的分布

  3 连续型随机变量的分布

  连续型随机变量 的分布用概率密度函数 表示。下面以产品的某个质量特性值 来说明 的由来。

  假如我们一个接一个地测量产品的质量特性 ,把测量得来的x值一个接一个地描在数轴上,当累积到很多x时,就形成了一个图形,把纵轴改为单位长度上的频率,由于频率的稳定性,随着被测质量特性x的增多,图形就越稳定,其外形显现出一条曲线,这条曲线就是概率密度曲线,相应的表达式 称为概率密度曲线。由于频率稳定于概率,因此可以用概率代替频率,从而纵轴成为“单位长度上的概率”,这就是概率密度的概念,故最后形成的曲线称为概率密度曲线,它一定位于x轴的上方,即 ,并且与x轴所夹面积恰为1。而X在区间 (a,b)上取值的概率为 区间上的面积。

  4 随机变量分布的均值、方差与标准差

  随机变量的分布有几个重要的特征数,用来表示分布的中心位置和散布大小。

  均值用来表示分布的中心位置。

来源:考试网-质量工程师考试

编辑推荐