三、计算题(本大题共6小题,每小题5分,共30分)
26.某车间牛产某种零件,20名工人日产零件数如颢26表1所示。
7 |
8 |
7 |
10 |
13 |
15 |
4 |
10 |
1 |
19 |
11 |
12 |
16 |
17 |
14 |
2 |
1 |
16 |
19 |
5 |
题26表1
请按照题26表2给出的分组界限进行分组,并制作频率分布表。
组号 |
分组界限 |
频数 |
频率 |
1 |
[1,5] |
|
|
2 |
[6,10] |
|
|
3 |
[11,15] |
|
|
4 |
[16,20] |
|
|
题26表2
27.灯管厂生产出一批灯管,拿出5箱给收货方抽检。这5箱灯管被收货方抽检到的概率分别为0.2,0.3,0.1,0.1,0.3。其中,第一箱的次品率为0.02,第二箱的次品率为0,第三箱的次品率为0.03,第四箱的次品率为0.01,第五箱的次品率为0.01。收货方从所有灯管中任取一只,问抽得次品的概率是多少?
28.某型号零件的寿命服从均值为1200小时,标准差为250小时的正态分布。随机抽取一个零件,求它的寿命不低于1300小时的概率。
(已知29.假设某单位员工每天用于阅读书籍的时间服从正态分布,现从该单位随机抽取了16名员工,己知他们用于阅读书籍的平均时间为50分钟,样本标准差为20分钟,试以95%的置信度估计该单位员工用于阅读书籍的平均时间的置信区间。
(已知t0.025(15)=2.13, t0.025(16)=2.12,t0.05(15)=1.753, t0.05(16)=1.746)
30.某煤矿2005年煤炭产量为25万吨,“十一五”期间(2006-2010)每年平均增长4%,以后每年平均增长5%,问到2015年该煤矿的煤碳产量将达到什么水平?
31.设某企业两种商品的销售额及销售量增长速度资料如题31表所示:
产品 |
销售额(万元) |
销售量增长速度(%) | |
基期 |
报告期 | ||
A |
2000 |
2400 |
25 |
B |
1200 |
1400 |
10 |
题31表
要求:(1)计算销售额指数;(2)以基期销售额为权数计算销售量指数。
四、应用题(本大题共2小题,每小题10分,共20分)
32.某农场种植的苹果优等品率为40%,为提高苹果的优等品率,该农场采用了一种新的种植技术,采用后对于500个苹果组成的随机样本的测试表明,其中有300个苹果为优等品。
(1)求该农场种植苹果的样本优等品率。(2分)
(2)该农场种植苹果的优等品率是否有显著提高(可靠性取95%)并说明理由?请给出相应假设检验的原假设和备择假设。(8分)(z0.05=1.645, z0.025=l.96)
33.对某市的百货商店进行抽样调查,5家被抽查的商店职工月平均销售额和利润率数据如题33表所示:
人均月销售额(千元) |
3 |
4 |
5 |
6 |
7 |
利润率(%) |
6 |
8 |
10 |
12 |
16 |
题33表
要求:
(1)计算人均月销售额与利润率之间的简单相关系数;(3分)
(2)以利润率为因变量,人均月销售额为自变量,建立线性回归方程;(5分)
(3)计算估计标准误差。(2分)