考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2021年中考数学压轴题精选(7)

来源:中华考试网收藏本页   【 】  [ 2020年12月28日 ]

  1. 已知抛物线y=ax-+bx+c经过A (- 1,0)、B (3, 0)、C (0, 3)三点,直线1是抛物线的对称轴.

  (1)求抛物线的函数关系式;

  (2)设点P是直线1上的一个动点,当△PAC的周长最小时,求点P的坐标;

  (3)在直线1上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由。

  参考答案:

  (1)抛物线的解析式: y=x²+2x+3.

  (2)连接BC,直线BC与直线1的交点为P;

  ∵点A、B关于直线1对称,∴PA=PB,∴BC=PC+PB=PC+PA

  设直线BC的解析式为y=kx+b (k≠0),将B (3,0),C (O,3)代入上式,得:

  3k+b=0;b=3

  解得:

  k=- 1;b=3

  ∴直线BC的函数关系式y=-x+3;当x=1时,y=2,即P的坐标(1, 2).

  (3)抛物线的对称轴为: x=-b/2a=1,设M(1,m),已知A(-1,0)、C(0,3),则:

  MA²=m²+4,MC²= (3 -m) ²+1=m²- 6m+10,AC²=10;

  ①若MA=MC,则MA²=MC²,得: m²+4=m²- 6m+10,得: m=1;

  ②若MA=AC,则MA²-=AC²,得: m²+4=10, 得: m=+√6;

  ③若MC=AC,则MC²=Ac²,得: m²- 6m+10=10,得: m1=0, m2=6;

  当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;

  综上可知,符合条件的M点,且坐标为M (1,√6) (1,-√6) (1,1) (1, 0).

 

我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照