2019年浙江省杭州市中考数学预测卷
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.
1.(3分)(2013•西湖区一模)在﹣5,0,﹣3,6这四个数中,最小的数是( )
2.(3分)(2013•西湖区一模)下列有关叙述错误的是( )
3.(3分)(2011•昭通)已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是( )
>>>在线下载2019年浙江省杭州市中考数学预测卷(word下载版)
4.(3分)(2013•西湖区一模)母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生有( )名.
5.(3分)(2009•宁波)反比例函数y=在第一象限的图象如图所示,则k的值可能是( )
6.(3分)(2013•西湖区一模)如图,x的值可能为( )
7.(3分)(2013•西湖区一模)已知m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为( )
8.(3分)(2014•路北区二模)若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为( )
9.(3分)(2014•路北区二模)如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是( )
10.(3分)(2013•西湖区一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图;
(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.
11.(4分)(2013•西湖区一模)数据3,1,1,6,1,3的中位数是 _________ ;众数是 _________ .
12.(4分)(2013•西湖区一模)分解因式:a3﹣4a(a﹣1)= _________ .
13.(4分)(2012•杭州)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 _________ %.
14.(4分)(2013•西湖区一模)一个由若干个大小完全相同的立方体堆成的立体图形的三视图如图所示,则组成这样的立体图形的小立方体的个数最多有 _________ 个,最少有 _________ 个.
15.(4分)(2013•西湖区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tan∠C=.则AE的长度为 _________ .
16.(4分)(2013•西湖区一模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 _________ .
三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.(6分)(2013•西湖区一模)已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0).
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.
18.(8分)(2013•西湖区一模)如图,⊙P与y轴相切,圆心为P(﹣2,1),直线MN过点M(2,3),N(4,1).
(1)请你在图中作出⊙P关于y轴对称的⊙P′;(不要求写作法)
(2)求⊙P在x轴上截得的线段长度;
(3)直接写出圆心P′到直线MN的距离.
19.(8分)(2013•西湖区一模)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB及两根与FG垂直且长均为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66°.
(1)求点D与点C的高度差DH的长度;
(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66°≈0.91,cos66°≈0.41,tan66°≈2.25,cot66°≈0.45)
20.(10分)(2013•西湖区一模)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表: