考点: 同位角、内错角、同旁内角.
分析: 根据同位角的定义得出结论.
解答: 解:∠1与∠5是同位角.
故选:D.
点评: 本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.
22.(2014•黔南州,第6题4分)下列图形中,∠2大于∠1的是( )
A. ] B. C. D.
考点: 平行四边形的性质;对顶角、邻补角;平行线的性质;三角形的外角性质.
分析: 根据平行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质即可作出判断.
解答: 解:A、∠1=∠2,故选项错误;
B、根据三角形的外角的性质可得∠2>∠1,选项正确;
C、根据平行四边形的对角相等,得:∠1=∠2,故选项错误;
D、根据对顶角相等,则∠1=∠2,故选项错误;
故选B.
点评: 本题考查了行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质,正确掌握性质定理是关键.
23.(2014年贵州安顺,第5题3分)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是( )
A. 60° B. 80° C. 100° D. 120°
考点: 平行线的性质..
专题: 几何图形问题.
分析: 根据两直线平行,同位角相等、同旁内角互补以及平角的定义可计算即可.
解答: 解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;
∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),
∴∠PQR=180°﹣2∠AQR=100°,
∴∠QPB=180°﹣100°=80°.
故选B.
点评: 本题结合反射现象,考查了平行线的性质和平角的定义,是一道好题.
24.(2014•山西,第2题3分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于( )
A. 65° B. 70° C. 75° D. 80°
考点:平行线的性质.
分析:根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.
解答:解:如图,∵AB∥CD,∠1=110°,
∴∠1+∠3=180°,即100+∠3=180°,
∴∠3=70°,
∴∠2=∠3=70°.
故选:B.
点评:本题考查了平行线的性质.
总结:平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
25. (2014•丽水,第4题3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )
A. 50° B. 45° C. 35° D. 30°
考点: 平行线的性质;直角三角形的性质.
分析: 根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.
解答: 解:如图 ,
∵直线a∥b,
∴∠3=∠1=60°.
∵AC⊥AB,
∴∠3+∠2=90°,
∴∠2=90°﹣∠3=90°﹣60°=30°,
故选:D.
点评: 本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.
26.(2014•湖北荆门,第3题3分)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )
第1题图
A. 155° B. 145° C. 110° D. 35°
考点: 平行线的性质.
分析: 首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.
解答: 解:如图,∵AB∥ED,∠ECF=70°,
∴∠BAC=∠ECF=70°,
∴∠FAB=180°﹣∠BAC=110°.
又∵AG平分∠BAC,
∴∠BAG= ∠BAC=35°,
∴∠FAG=∠FAB+∠BAG=145°.
故选:B.
点评: 本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.
27.(2014•陕西,第7题3分)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为( )
A. 17° B. 62° C. 63° D. 73°新$课$标$第$一$网
考点: 平行线的性质.
分析: 首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.
解答: 解:∵AB∥CD,
∴∠ABC=∠C=28°,
∵∠A=45°,
∴∠AEC=∠A+∠ABC=28°+45°=73°,
故选:D.
点评: 此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.
28.(2014•四川成都,第7题3分)如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )
A. 60° B. 50° C. 40° D. 30°
考点: 平行线的性质;余角和补角
分析: 根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.
解答: 解:∵∠1=30°,
∴∠3=180°﹣90°﹣30°=60°,
∵直尺两边互相平行,
∴∠2=∠3=60°.
故选A.