考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2016中考数学备考专项练习:全等三角形_第2页

来源:中华考试网收藏本页   【 】  [ 2015年9月20日 ]

  考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

  分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.

  解答:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,

  ∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,

  在△ACF和△OBE中, ,∴△CAF≌△BOE(AAS),

  ∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,

  ∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴ ,即 ,

  ∴OE= ,即点B( ,3),∴AF=OE= ,

  ∴点C的横坐标为:﹣(2﹣ )=﹣ ,∴点D(﹣ ,4).故选B.

  点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

  6.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(  )

  (第3题图)

  A. B. C. D. ﹣2

  考点: 全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理

  专题: 计算题.

  分析: 连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,

  连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.

  解答: 解:∵AB=AD=6,AM:MB=AN:ND=1:2,

  ∴AM=AN=2,BM=DN=4,

  连接MN,连接AC,

  ∵AB⊥BC,AD⊥CD,∠BAD=60°

  在Rt△ABC与Rt△ADC中,

  ,

  ∴Rt△ABC≌Rt△ADC(LH)

  ∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,

  ∴BC= AC,

  ∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,

  3BC2=AB2,

  ∴BC=2 ,

  在Rt△BMC中,CM= = =2 .

  ∵AN=AM,∠MAN=60°,

  ∴△MAN是等边三角形,

  ∴MN=AM=AN=2,

  过M点作ME⊥ON于E,设NE=x,则CE=2 ﹣x,

  ∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2 )2﹣(2 ﹣x)2,

  解得:x= ,

  ∴EC=2 ﹣ = ,

  ∴ME= = ,

  ∴tan∠MCN= =

  故选A.

  点评: 此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.

  7.(2014年山东泰安,第16题3分)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为(  )

  A.10° B. 20° C. 7.5° D. 15°

  分析: 根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.

  解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,

  ∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,

  ∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,

  在△ABC和△D1CB中, ,∴△ABC≌△D1CB(SAS),

  ∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.

  点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.

  8.(2014年四川资阳,第6题3分)下列命题中,真命题是(  )

  A. 一组对边平行,另一组对边相等的四边形是平行四边形

  B. 对角线互相垂直的平行四边形是矩形

  C. 对角线垂直的梯形是等腰梯形

  D. 对角线相等的菱形是正方形

  考点: 命题与定理.

  分析: 利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.

  解答: 解:A、有可能是等腰梯形,故错误;

  B、对角线互相垂直的平行四边形是菱形,故错误;

  C、对角线相等的梯形是等腰梯形,故错误;

  D、正确,

  故选D.

  点评: 本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.

首页 1 2 尾页
我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照