考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2016中考数学备考专项练习:矩形菱形

来源:中华考试网收藏本页   【 】  [ 2015年9月9日 ]

  一、选择题

  1. (2014•上海,第6题4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(  )

  A. △ABD与△ABC的周长相等

  B. △ABD与△ABC的面积相等

  C. 菱形的周长等于两条对角线之和的两倍

  D. 菱形的面积等于两条对角线之积的两倍

  考点: 菱形的性质.

  分析: 分别利用菱形的性质结合各选项进而求出即可.

  解答: 解:A、∵四边形ABCD是菱形,

  ∴AB=BC=AD,

  ∵AC

  ∴△ABD与△ABC的周长不相等,故此选项错误;

  B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,

  ∴△ABD与△ABC的面积相等,故此选项正确;

  C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;

  D、菱形的面积等于两条对角线之积的,故此选项错误;

  故选:B.

  点评: 此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.

  2. (2014•山东枣庄,第7题3分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )

  A. 22 B. 18 C. 14 D. 11

  考点: 菱形的性质

  分析: 根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.

  解答: 解:在菱形ABCD中,∠BAC=∠BCA,

  ∵AE⊥AC,

  ∴∠BAC+∠BAE=∠BCA+∠E=90°,

  ∴∠BAE=∠E,

  ∴BE=AB=4,

  ∴EC=BE+BC=4+4=8,

  同理可得AF=8,

  ∵AD∥BC,

  ∴四边形AECF是平行四边形,

  ∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.

  故选A.

  点评: 本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.

  3. (2014•山东烟台,第6题3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为(  )

  A. 28° B. 52° C. 62° D. 72°

  考点:菱形的性质,全等三角形.

  分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.

  解答:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,

  ∴∠MAO=∠NCO,∠AMO=∠CNO,

  在△AMO和△CNO中,∵ ,∴△AMO≌△CNO(ASA),

  ∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,

  ∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.

  点评: 本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.

  4.(2014•山东聊城,第9题,3分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为(  )

  A. 2 B. 3 C. 6 D.

  考点: 矩形的性质;菱形的性质.

  分析: 根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.

  解答: 解:∵四边形ABCD是矩形,

  ∴∠A=90°,

  即BA⊥BF,

  ∵四边形BEDF是菱形,

  ∴EF⊥BD,∠EBO=∠DBF,

  ∴AB=BO=3,∠ABE=∠EBO,

  ∴∠ABE=∠EBD=∠DBC=30°,

  ∴BE= =2 ,

  ∴BF=BE=2 ,

  ∵EF=AE+FC,AE=CF,EO=FO

  ∴CF=AE= ,

  ∴BC=BF+CF=3 ,

  故选B.

  点评: 本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°.

  5. (2014•浙江杭州,第5题,3分)下列命题中,正确的是(  )

  A. 梯形的对角线相等 B. 菱形的对角线不相等

  C. 矩形的对角线不能相互垂直 D. 平行四边形的对角线可以互相垂直

  考点: 命题与定理.

  专题: 常规题型.

  分析: 根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.

  解答: 解:A、等腰梯形的对角线相等,所以A选项错误;

  B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;

  C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;

  D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.

  故选D.

  点评: 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.

  6.(2014年贵州黔东南10.(4分))如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为(  )

  A. 6 B. 12 C. 2 D. 4

  考点: 翻折变换(折叠问题).

  分析: 设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.

  解答: 解:设BE=x,则CE=BC﹣BE=16﹣x,

  ∵沿EF翻折后点C与点A重合,

  ∴AE=CE=16﹣x,

  在Rt△ABE中,AB2+BE2=AE2,

  即82+x2=(16﹣x)2,

  解得x=6,

  ∴AE=16﹣6=10,

  由翻折的性质得,∠AEF=∠CEF,

  ∵矩形ABCD的对边AD∥BC,

  ∴∠AFE=∠CEF,

  ∴∠AEF=∠AFE,

  ∴AE=AF=10,

  过点E作EH⊥AD于H,则四边形ABEH是矩形,

  ∴EH=AB=8,

  AH=BE=6,

  ∴FH=AF﹣AH=10﹣6=4,

  在Rt△EFH中,EF= = =4 .

  故选D.

  点评: 本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.

  7.(2014•遵义9.(3分))如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为(  )

  A. B. C. D.

  考点: 相似三角形的判定与性质;正方形的性质;圆周角定理

  分析: 先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.

  解答: 解:∵四边形ABCD是正方形,

  ∴∠ABC=∠PCF=90°,CD∥AB,

  ∵F为CD的中点,CD=AB=BC=2,

  ∴CP=1,

  ∵PC∥AB,

  ∴△FCP∽△FBA,

  ∴ = =,

  ∴BF=4,

  ∴CF=4﹣2=2,

  由勾股定理得:BP= = ,

  ∵四边形ABCD是正方形,

  ∴∠BCP=∠PCF=90°,

  ∴PF是直径,

  ∴∠E=90°=∠BCP,

  ∵∠PBC=∠EBF,

  ∴△BCP∽△BEF,

  ∴ = ,

  ∴ = ,

  ∴EF= ,

  故选D.

  点评: 本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.

  8.(2014•十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为(  )

  A. 2 B. C. 2 D.

  考点: 勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.

  分析: 根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.

  解答: 解:∵AD∥BC,DE⊥BC,

  ∴DE⊥AD,∠CAD=∠ACB

  ∵点G为AF的中点,

  ∴DG=AG,

  ∴∠GAD=∠GDA,

  ∴∠CGD=2∠CAD,

  ∵∠ACD=2∠ACB,

  ∴∠ACD=∠CGD,

  ∴CD=DG=3,

  在Rt△CED中,DE= =2 .

  故选:C.

  点评: 综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.

首页 1 2 尾页
我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照