考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2016中考数学备考专项练习:梯形_第3页

来源:中华考试网收藏本页   【 】  [ 2015年9月9日 ]

  三.解答题

  1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.

  (1)求证:四边形DBFE是平行四边形;

  (2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

  (第1题图)

  考点:三角形的中位线、菱形的判定

  分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;

  (2)根据邻边相等的平行四边形是菱形证明.

  (1)证明:∵D、E分别是AB、AC的中点,

  ∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;

  (2)解答:当AB=BC时,四边形DBEF是菱形.

  理由如下:∵D是AB的中点,∴BD= AB,∵DE是△ABC的中位线,

  ∴DE= BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.

  点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.

  2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2 ,求CE的长.

  考点: 直角梯形;矩形的判定与性质;解直角三角形..

  分析: 利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.

  解答: 解:过点A作AH⊥BC于H,则AD=HC=1,

  在△ABH中,∠B=30°,AB=2 ,

  ∴cos30°= ,

  即BH=ABcos30°=2 × =3,

  ∴BC=BH+BC=4,

  ∵CE⊥AB,

  ∴CE= BC=2.

  点评: 此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.

  3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).

  (1)求过点B的双曲线的解析式;

  (2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.

  考点: 等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.

  分析: (1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y= (k≠0),然后利用待定系数法求反比例函数解析式解答;

  (2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.

  解答: 解:(1)如图,过点C作CD⊥AB于D,

  ∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),

  ∴CD=2,BD=3,

  ∵C(0,2),

  ∴点B的坐标为(2,5),

  设双曲线的解析式为y= (k≠0),

  则 =5,

  解得k=10,

  ∴双曲线的解析式为y= ;

  (2)平移后的点C落在(1)中的双曲线上.x k b 1 . c o m

  理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),

  当x=5时,y= =2,

  ∴平移后的点C落在(1)中的双曲线上.

  点评: 本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.

  4. (2014•黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.

  (1)当直线m经过B点时,如图1,易证EM= CF.(不需证明)

  (2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.

  考点: 旋转的性质;全等三角形的判定与性质;梯形中位线定理..

  分析: (1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;

  (2)根据题意得出图2的结论为:ME= (BD+CF),图3的结论为:ME= (CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.

  解答: 解:(1)如图1,

  ∵ME⊥m于E,CF⊥m于F,

  ∴ME∥CF,

  ∵M为BC的中点,

  ∴E为BF中点,

  ∴ME是△BFC的中位线,

  ∴EM= CF.

  (2)图2的结论为:ME= (BD+CF),

  图3的结论为:ME= (CF﹣BD).

  图2的结论证明如下:连接DM并延长交FC的延长线于K

  又∵BD⊥m,CF⊥m

  ∴BD∥CF

  ∴∠DBM=∠KCM

  在△DBM和△KCM中

  ∴△DBM≌△KCM(ASA),

  ∴DB=CK DM=MK

  由题意知:EM= FK,

  ∴ME= (CF+CK)= (CF+DB)

  图3的结论证明如下:连接DM并延长交FC于K

  又∵BD⊥m,CF⊥m

  ∴BD∥CF

  ∴∠MBD=∠KCM

  在△DBM和△KCM中

  ∴△DBM≌△KCM(ASA)

  ∴DB=CK,DM=MK,

  由题意知:EM= FK,

  ∴ME= (CF﹣CK)= (CF﹣DB).

  点评: 此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.

首页 1 2 3 尾页
我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照