B级 中等题
7.已知△ABC,且∠ACB=90°.
(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明).
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(需证明).
8.(2013年江苏宿迁)如图6317,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF. w
求证:四边形ABFE为菱形.
C级 拔尖题
9.(2013年山东德州)(1)如图6318(1),已知△ABC,以AB,AC为边向△ABC外作等边三角形ABD和等边三角形ACE.连接BE,CD.请你完成图形,并证明:BE=CD(尺规作图,不写做法,保留作图痕迹);
(2)如图6318(2),已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由;
(3)运用(1)(2)解答中积累的经验和知识,完成下题:
如图6318(3),要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
(1) (2) (3)
参考答案
7.解:(1)如图50.
(2)直线BD与⊙A相切.证明如下:
∵∠ABD=∠BAC,∴AC∥BD.
∵∠ACB=90°,⊙A的半径等于BC,
∴点A到直线BD的距离等于BC.
∴直线BD与⊙A相切.
8.解:(1)如图51.
(2)∵BE平分∠ABC,∴∠ABO=∠FBO.
∵AF⊥BE于点O,
∴∠AOB=∠FOB=∠AOE=90°.
又∵BO=BO,
∴△AOB≌△FOB.∴AO=FO,AB=FB.
∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠AEO=∠FBO.
∴△AOE≌△FOB.∴AE=BF.
又∵AE∥BF,∴四边形ABFE是平行四边形.
又∵AB=FB,∴平行四边形ABFE是菱形.
11.(1)证明:如图52.
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°.
∴∠BAD+∠BAC=∠CAE+∠BAC.
即∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
图52 图53
(2)解:BE=CD.
理由:∵四边形ABFD和ACGE均为正方形,
∴AD=AB,AC=AE,∠BAD=∠CAE=90°.
∴∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
(3)解:如图53,过A作等腰直角三角形ABD,∠BAD=90°,
则AD=AB=100,∠ABD=45°.∴BD=100 2.
连接CD,则由(2)可知BE=CD.
∵∠ABC=45°,在Rt△DBC中,BC=100,BD=100 2.
∴CD=1002+100 22=100 3.
∴BE的长为100 3米.