∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,
如图85,设点A关于x轴的对称点为A″,则PA=PA″,∴要求PA+PB的最小值,只需求PA″+PB的最小值,而点A″,B间的直线段距离最短,
∴PA″+PB的最小值为线段A″B的长度.
∵A(0,7),B(6,1)∴A″(0,-7),A″C=6,BC=8,
∴A″B=A″C2+BC2=62+82=10.
图85
2.解:直接应用:1 2
变形应用:y2y1=x+12+4x+1=(x+1)+4x+1≥4.
∴y2y1的最小值是4,此时x+1=4x+1,(x+1)2=4,x=1.
实际应用:
设该汽车平均每千米的运输成本为y,则y=360+1.6x+0.001x2,故平均每千米的运输成本为yx=0.001x+360x+1.6=0.001x+0.360.001x+1.6.
由题意,可得当0.001x=0.36,即x=600时,yx取得最小值.此时yx≥2 0.36+1.6=2.8.
答:当汽车一次运输路程为600千米时,其平均每千米的运输成本最低,最低是2.8元.