二、填空题
1. (2014•山东枣庄,第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为 (3 +3 ) cm.
考点: 平面展开-最短路径问题;截一个几何体
分析: 要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.
解答: 解:如图所示:
△BCD是等腰直角三角形,△ACD是等边三角形,
在Rt△BCD中,CD= =6 cm,
∴BE=CD=3 cm,
在Rt△ACE中,AE= =3 cm,
∴从顶点A爬行到顶点B的最短距离为(3 +3 )cm.
故答案为:(3 +3 ).
点评: 考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.
2. ( 2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65 °.
考点: 平行线的性质.
分析: 根据平行线的性质得出∠1=∠2,代入求出即可.
解答: 解:∵直线a∥b,
∴∠1=∠2,
∵∠1=65°,
∴∠2=65°,
故答案为:65.
点评: 本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.
3. ( 2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.
考点: 等腰三角形的性质.
分析: 先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.
解答: 解:∵CA=CB,
∴∠A=∠ABC,
∵∠C=40°,
∴∠A=70°
∴∠ABD=∠A+∠C=110°.
故答案为:110.
点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.
4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是 77° .
考点: 余角和补角.
分析: 根据互为余角的两个角的和等于90°列式计算即可得解.
解答: 解:∵∠α=13°,
∴∠α的余角=90°﹣13°=77°.
故答案为:77°.
点评: 本题考查了余角的定义,是基础题,熟记概念是解题的关键.
5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′= .
分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.
解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.
点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.
6. ( 2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50 °.
考点: 对顶角、邻补角.
分析: 根据对顶角相等,可得答案.
解答: 解;∵∠BOC与∠AOD是对顶角,
∴∠BOC=∠AOD=50°,
故答案为:50.
点评: 本题考查了对顶角与邻补角,对顶角相等是解题关键.