13. (2014年贵州安顺,第6题3分)已知等腰三角形的两边长分別为a、b,且a、b满足 +(2a+3b﹣13)2=0,则此等腰三角形的周长为( )
A. 7或8 B. 6或1O C. 6或7 D. 7或10
考点: 等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系..
分析: 先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.
解答: 解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,
∴ ,
解得 ,
当a为底时,三角形的三边长为2,3,3,则周长为8;
当b为底时,三角形的三边长为2,2,3,则周长为7;
综上所述此等腰三角形的周长为7或8.
故选A.
点评: 本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.
14.(2014•贵州黔西南州, 第3题4分)已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )
A. 21 B. 20 C. 19 D. 18
考点: 等腰三角形的性质.
分析: 由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.
解答: 解:8+8+5
=16+5
=21.
故这个三角形的周长为21.
故选:A.
点评: 考查了等腰三角形两腰相等的性质,以及三角形周长的定义.