考试首页 | 考试用书 | 培训课程 | 模拟考场  
  当前位置: 中华考试网 >> 中考 >> 中考数学 >> 数学模拟题 >> 文章内容
  

2015年四川中考数学考前必做专题试题—三角形的边_第2页

来源:中华考试网收藏本页   【 】  [ 2015年3月6日 ]

  6.(2014•云南昆明,第5题3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )

  A. 85° B. 80°

  C. 75° D. 70°

  考点: 角平分线的性质,三角形外角性质.

  分析: 首先角平分线的性质求得 的度数,然后利用三角形外角性质求得∠BDC的度数即可.

  解答: 解: ∠ABC=70°,BD平分∠ABC

  ∠A=50°

  ∠BDC

  故选A.

  点评: 本题考查了三角形角平分线的性质和三角形外角性质.,属于基础题,比较简单.

  7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(  )

  A. 1,2,3 B. 1,1, C. 1,1, D. 1,2,

  考点: 解直角三角形

  专题: 新定义.

  分析: A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;

  B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

  C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;

  D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.

  解答: 解:A、∵1+2=3,不能构成三角形,故选项错误;

  B、∵12+12=( )2,是等腰直角三角形,故选项错误;

  C、底边上的高是 = ,可知是顶角120°,底角30°的等腰三角形,故选项错误;

  D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.

  故选:D.

  点评: 考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.

  8. ( 2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是(  )

  A. 1cm

  考点: 等腰三角形的性质;解一元一次不等式组;三角形三边关系.

  分析: 设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.

  解答: 解:∵在等腰△ABC中,AB=AC,其周长为20cm,

  ∴设AB=AC=xcm,则BC=(20﹣2x)cm,

  ∴ ,

  解得5cm

  故选B.

  点评: 本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.

  9. (2014•湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )

  A. 45° B. 54° C. 40° D. 50°

  考点: 平行线的性质;三角形内角和定理

  分析: 根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.

  解答: 解:∵∠B=46°,∠C=54°,

  ∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,

  ∵AD平分∠BAC,

  ∴∠BAD= ∠BAC= ×80°=40°,

  ∵DE∥AB,

  ∴∠ADE=∠BAD=40°.

  故选C.

  点评: 本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.

  10.(2014•台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?(  )

  A.24 B.30 C.32 D.36

  分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.

  解:∵直线M为∠ABC的角平分线,

  ∴∠ABP=∠CBP.

  ∵直线L为BC的中垂线,

  ∴BP=CP,

  ∴∠CBP=∠BCP,

  ∴∠ABP=∠CBP=∠BCP,

  在△ABC中,3∠ABP+∠A+∠ACP=180°,

  即3∠ABP+60°+24°=180°,

  解得∠ABP=32°.

  故选C.

  点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.

我要提问】【本文纠错】【告诉好友】【打印此文】【返回顶部
将中华自考网添加到收藏夹 | 每次上网自动访问中华自考网 | 复制本页地址,传给QQ/MSN上的好友 | 申请链接 TOP
关于本站  网站声明  广告服务  联系方式  站内导航
Copyright © 2006-2019 中华考试网(Examw.com) All Rights Reserved 营业执照