4.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.
据此判断下列等式成立的是 ②③④ (写出所有正确的序号)
①cos(﹣60°)=﹣;
②sin75°= ;
③sin2x=2sinx•cosx;
④sin(x﹣y)=sinx•cosy﹣cosx•siny.
考点: 锐角三角函数的定义;特殊角的三角函数值.
专题: 新定义.
分析: 根据已知中的定义以及特殊角的三角函数值即可判断.
解答: 解:①cos(﹣60°)=cos60°=,命题错误;
②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=× + × = + = ,命题正确;
③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx,故命题正确;
④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命题正确.
故答案是:②③④.
点评: 本题考查锐角三角函数以及特殊角的三角函数值,正确理解题目中的定义是关键.
5.(2014•甘肃白银、临夏,第15题4分)△ABC中,∠A、∠B都是锐角,若sinA= ,cosB=,则∠C= .
考点: 特殊角的三角函数值;三角形内角和定理.
分析: 先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
解答: 解:∵△ABC中,∠A、∠B都是锐角sinA= ,cosB=,
∴∠A=∠B=60°.
∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.
故答案为:60°.
点评: 本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
6. ( 2014•广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .
考点: 锐角三角函数的定义;三角形的面积;勾股定理.
分析: 根据正弦是角的对边比斜边,可得答案.
解答: 解:如图,作AD⊥BC于D,CE⊥AB于E,
由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,
由BC•AD=AB•CE,
即CE= = ,
sinA= = =,
故答案为:.
点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.