山东省济南市2018年中考数学试题及答案(word版)
一、选择题(本大题共12小题,每小题4分,共48分)
1.(2018济南,1,4分)4的算术平方根是( )
A.2 B.-2 C.±2 D.
>>>在线下载山东省济南市2018年中考数学试题及答案(word版)
【答案】A
2.(2018济南,2,4分)如图所示的几何体,它的俯视图是( )
【答案】D
3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )
A.0.76×104 B.7.6×103 C.7.6×104 D.76×102
【答案】B
4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )
A B C D
【答案】D
5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为( )
A.17.5° B.35° C.55° D.70°
【答案】B
6.(2018济南,6,4分)下列运算正确的是( )
A.a2+2a=3a3 B.(-2a3)2=4a5
C.(a+2)(a-1)=a2+a-2 D.(a+b)2=a2+b2
【答案】C
7.(2018济南,7,4分)关于x的方程3x-2m=1的解为正数,则m的取值范围是( )
A.m<-2(1) B.m>-2(1) C.m>2(1) D.m<2(1)
【答案】B
8.(2018济南,8,4分)在反比例函数y=-x(2)图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0
A.y3
【答案】C
9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为( )
A.(0,4) B.(1,1) C.(1,2) D.(2,1)
【答案】C
10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是( )
A.与2016年相比,2017年我国电子书人均阅读量有所降低
B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57
C.从2014年到2017年,我国纸质书的人均阅读量逐年增长
D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多
【答案】B
11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.6π-2(9) B.6π-9 C.12π-2(9) D.4(9π)
【答案】A
12.(2018济南,11,4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,-2)都是“整点”.抛物线y=mx2-4mx+4m-2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A.2(1)≤m<1 B.2(1)
【答案】B
【解析】
解:∵y=mx2-4mx+4m-2=m(x-2)2-2且m>0,
∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x=2.
由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意.
方法一:
①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意.
将(1,-1)代入y=mx2-4mx+4m-2得到-1=m-4m+4m-2.解得m=1.
此时抛物线解析式为y=x2-4x+2.
由y=0得x2-4x+2=0.解得x1=2-≈0.6,x2=2+≈3.4.
∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.
则当m=1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意.
∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大,】
答案图1(m=1时) 答案图2( m=2(1)时)
②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.
此时x轴上的点 (1,0)、(2,0)、(3,0)也符合题意.
将(0,0)代入y=mx2-4mx+4m-2得到0=0-4m+0-2.解得m=2(1).
此时抛物线解析式为y=2(1)x2-2x.
当x=1时,得y=2(1)×1-2×1=-2(3)<-1.∴点(1,-1)符合题意.
当x=3时,得y=2(1)×9-2×3=-2(3)<-1.∴点(3,-1) 符合题意.
综上可知:当m=2(1)时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,
∴m=2(1)不符合题.
∴m>2(1).
综合①②可得:当2(1)
方法二:根据题目提供的选项,分别选取m=2(1),m=1,m=2,依次加以验证.
①当m=2(1)时(如答案图3),得y=2(1)x2-2x.
由y=0得2(1)x2-2x=0.解得x1=0,x2=4.
∴x轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意.
当x=1时,得y=2(1)×1-2×1=-2(3)<-1.∴点(1,-1)符合题意.
当x=3时,得y=2(1)×9-2×3=-2(3)<-1.∴点(3,-1) 符合题意.
综上可知:当m=2(1)时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,
∴m=2(1)不符合题.∴选项A不正确.
答案图3( m=2(1)时) 答案图4(m=1时) 答案图5(m=2时)
②当m=1时(如答案图4),得y=x2-4x+2.
由y=0得x2-4x+2=0.解得x1=2-≈0.6,x2=2+≈3.4.
∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.
当x=1时,得y=1-4×1+2=-1.∴点(1,-1)符合题意.
当x=3时,得y=9-4×3+2=-1.∴点(3,-1) 符合题意.
综上可知:当m=1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意,
∴m=1符合题.
∴选项B正确.
③当m=2时(如答案图5),得y=2x2-8x+6.
由y=0得2x2-8x+6=0.解得x1=1,x2=3.
∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.
综上可知:当m=2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意,
∴m=2不符合题.