(3)代数式
①借助现实情境了解代数式,进一步理解用字母表示数的意义。
②能分析具体问题中的简单数量关系,并用代数式表示。
③会求代数式的值;能根据特定的问题找到所需要的公式,并会代入具体的值进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数。
②理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘)。
③能推导乘法公式: ; ,了解公式的几何背景,并能利用公式进行简单计算。
④能用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分,能进行简单的分式加、减、乘、除运算。
2.方程与不等式
(1)方程与方程组
①能根据具体问题中的数量关系列出方程。体会方程是刻画现实世界数量关系的有效模型。
②经历估计方程解的过程。
③掌握等式的基本性质。
④能解一元一次方程、可化为一元一次方程的分式方程。
⑤掌握代入消元法和加减消元法,能解二元一次方程组。
⑥理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
⑦会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。
⑧能根据具体问题的实际意义,检验方程的解是否合理。
(2)不等式与不等式组
①结合具体问题,了解不等式的意义,探索不等式的基本性质。
②能解数字系数的一元一次不等式,并能在数轴上表示出解集。会用数轴确定由两个一元一次不等式组成的不等式组的解集。
③能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
3.函数
(1)函数
①探索简单实例中的数量关系和变化规律,了解常量、变量的意义。
②结合实例,了解函数的概念和三种表示方法,能举出函数的实例。
③能结合图象对简单实际问题中的函数关系进行分析。
④能确定简单实际问题中函数自变量的取值范围,并会求出函数值。
⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系。
⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论。
(2)一次函数
①结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
②会利用待定系数法确定一次函数的表达式。
③能画一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图象的变化情况。
④理解正比例函数。
⑤体会一次函数与二元一次方程的关系。
⑥能用一次函数解决简单实际问题。 (3)二次函数
①通过对实际问题的分析,体会二次函数的意义。
②会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
③会用配方法将数字系数的二次函数的表达式化为 的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
(4)反比例函数
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
②能画出反比例函数的图象,根据图象和表达式 探索并理解k>0和k<0时,图象的变化情况。
③能用反比例函数解决简单实际问题。
(二)图形与几何
1.图形的性质
(1)点、线、面、角
①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等。
②会比较线段的长短,理解线段的和、差,以及线段中点的意义。
③掌握基本事实:两点确定一条直线。
④掌握基本事实:两点之间线段最短。
⑤理解两点间距离的意义,能度量两点间的距离。
⑥理解角的概念,能比较角的大小。
⑦认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。
(2)相交线与平行线
①理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。
②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
③理解点到直线的距离的意义,能度量点到直线的距离。
④掌握基本事实:过一点有且只有一条直线与已知直线垂直。
⑤识别同位角、内错角、同旁内角。
⑥理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
⑦掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
⑧掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。
⑨能用三角尺和直尺过已知直线外一点画这条直线的平行线。
⑩探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。