第三节 氨基酸合成代谢的概况
一、氨基酸的N原子及碳骨架的来源
不同的生物合成氨基酸的能力不同,合成氨基酸的种类也有差异。只有少数生物(能合成固氮酶的微生物和藻类)可以利用N2和简单的碳化合物合成氨基酸。氨可以被所有生物所利用,由N2衍生的氨通过谷氨酸和谷氨酰胺整合到氨基酸等代谢物中,它们的碳骨架来自糖酵解、柠檬酸循环和戊糖磷酸途径。
氨基酸生物合成途径不是分解途径的逆转,是多酶体系催化的多步骤反应。所有自身能合成的非必需氨基酸都是生糖氨基酸。而必需氨基酸有生糖和生酮氨基酸,因为它们转变成糖和转变成酮体的过程是不可逆的,所以脂肪很少或不能用来合成氨基酸。
不同氨基酸的生物合成途径不同,按相关代谢途径的中间物提供的起始物的不同分为六个类型:
二、氨基酸与一碳单位
生物体内许多物质的代谢和含有一个碳原子的基团有关,如卵磷脂的生物合成中有由S-腺苷甲硫氨酸提供甲基的反应。某些氨基酸在分解代谢过程中可以产生一碳单位。
1.概念:甲基、亚甲基(-CH2-)、次甲基(-CH=)、甲酰基、亚胺甲基(-CH=NH)等,称为一碳单位。但CO2不属于这种类型。
2.产生和转运:一碳单位主要来源于丝氨酸、甘氨酸、组氨酸及色氨酸的代谢。一碳单位不能游离存在,必须与载体四氢叶酸(FH4或THFA)结合转运和参与代谢。叶酸为B族维生素,在体内经二氢叶酸还原酶作用,加氢形成FH4。一碳单位通常结合在FH4分子的N5、N10位上,如N5,N10 -甲烯四氢叶酸。
丝氨酸在羟甲基转移酶催化下,生成甘氨酸的过程中产生N5,N10–CH2-FH4,而甘氨酸在甘氨酸裂解酶作用下,也会产生N5,N10–CH2-FH4。
组氨酸在体内经酶促分解产生N-亚氨甲基谷氨酸,进而转化为谷氨酸。(FH4接受亚氨甲基生成N5-CH=NH-FH4,再生成N5,N10=CH-FH4,后者可参与合成嘌呤碱C8原子。)
色氨酸在分解过程中产生甲酸,结合FH4,生成N10-甲酰四氢叶酸,参与合成嘌呤碱C2原子。
不同形式的一碳单位可通过氧化还原反应而彼此转变。其中N5-甲基四氢叶酸的生成是不可逆的,它的含量较多,成为细胞内四氢叶酸的储存形式和甲基的间接供体,即将甲基转移给同型半胱氨酸生成甲硫氨酸(Met),在腺苷转移酶催化下生成S-腺苷甲硫氨酸(SAM),再在甲基转移酶催化下,将活性甲基转移给甲基受体,然后水解去除腺苷生成同型半胱氨酸,从Met活化为SAM到供出甲基及其再生成的整个过程称为甲硫氨酸循环。体内一些有重要生理功能的化合物,如肾上腺素、胆碱、肉碱、肌酸等的合成都是从SAM获得活性甲基。
3.生理功用:主要是作为合成嘌呤和嘧啶核苷酸的原料。是将氨基酸和核苷酸代谢联系起来,与细胞的增殖、生长和机体发育过程有密切关系。
一、 一些氨基酸衍生物的合成
氨基酸除了作为蛋白质的构件分子外,还是许多特殊生物分子的前体,包括激素、辅酶、核苷酸、卟啉、NO及一些胺类分子。以下仅介绍几种:
1.神经递质和激素
氨基酸的脱羧作用在微生物中很普遍,在高等植物组织中亦有,但不是机体氨基酸代谢的主要方式。体内部分氨基酸可在专一性很高的氨基酸脱羧酶的催化下,生成相应的胺。如在脑组织,谷氨酸在谷氨酸脱羧酶作用下,脱去α-羧基生成γ-氨基丁酸(GABA),是一种抑制性神经递质。
组氨酸脱羧生成的组胺可控制血管收缩以及胃分泌胃酸。
色氨酸经羟化后脱羧生成5-羟色胺(5-HT),也是一种神经递质,还是某些非神经组织的激素。
苯丙氨酸和酪氨酸是两种重要的芳香族氨基酸。苯丙氨酸经羟化作用生成酪氨酸。后者参与儿茶酚胺、黑色素等代谢。苯酮酸尿症、白化病等遗传病与它们代谢异常有关。
2.牛磺酸
牛磺酸是某些胆酸的组分,于1827年在牛的胆汁中发现。牛磺酸分布于心、肝、肾、肺、脑、骨骼肌,来源于半胱氨酸氧化脱羧,也被认为是一种抑制性神经递质。
例题:
1.在由转氨酶催化的氨基转移过程中,磷酸吡哆醛的作用是
A、 与氨基酸的氨基生成Schiff碱。
B、 与氨基酸的羧基作用生成与酶结合的复合物
C、 增加氨基酸氨基的正电性
D、 增加氨基酸羧基的负电性
2.肌肉中的游离氨通过下列哪种途径运到肝脏:
A、 腺嘌呤核苷酸-次黄嘌呤核苷酸循环
B、 丙氨酸-葡萄糖循环
C、 鸟嘌呤核苷酸-黄嘌呤核苷酸循环
D、 谷氨酸-谷氨酰胺循环。
3.动物体内氨基酸分解产生的α-氨基,其运输和储存的形式是:
A、 尿素
B、 天冬氨酸
C、 谷氨酰胺
D、 氨甲酰磷酸
参考答案
1.A 2.B 3.C