2.动作电位的产生机制
(1)电化学驱动力:当某种离子跨膜扩散时,它受到来自浓度差和电位差的双重驱动力,两个驱动力的代数和称为电化学驱动力。当电化学驱动力推动正电荷由膜外流入膜内时,这一方向的离子电流,称为内向电流;当电化学驱动力推动正电荷由膜内流出膜外时,这一方向的离子电流,称为外向电流。内向电流使膜去极化,而外向电流则使膜复极化或超极化。
(2)动作电位产生的过程
1)锋电位的上升支:接近于Na+的平衡电位。
2)锋电位的下降支:是K+外流所致。
3)后电位:负后电位一般认为是在复极时迅速外流的K+蓄积在膜外侧附近,暂时阻碍了K+外流所致;正后电位一般认为是生电性钠泵作用的结果。
(3)注意
1)膜对Na+通透性增大,实际上是膜结构中存在的电压门控性Na+通道开放的结果。Na+通道有以下特点:①去极化程度越大,其开放的概率也越大,是电压依赖性的;②开闭是全或无式的,并且开、闭之间的转换速度非常快;③至少存在关闭、激活和失活三种功能状态,其形成与分子内部存在两种门控机制有关。
2)膜电导(通透性)变化的实质就是膜上离子通道随机开放和关闭的总和效应。
3)阈电位:能进一步诱发动作电位的去极化的临界值,称为阈电位(threshold potential)。
3.动作电位的传播:在无髓鞘神经纤维和肌纤维等细胞上,动作电位以局部电流的方式传播。在有髓鞘神经纤维上,局部电流仅在郎飞结之间发生,这种传导方式称为跳跃式传导,传导快且“节能”。
4.缝隙连接:缝隙连接处膜的电阻很小,一个细胞产生的动作电位可通过流经缝隙连接的局部电流直接传播到另一个细胞,使兴奋得以在细胞间直接传播。
四、局部电位
1.概念:当去极化的刺激很弱时,Na+通道并未被激活,仅在膜的局部产生电紧张电位;当去极化刺激稍强时,可引起少量的Na+通道激活和内向离子电流,在受刺激局部出现一个较小的膜的去极化,与电紧张电位叠加,这种产生于膜的局部、较小的去极化反应称为局部反应(local response),产生的电位称为局部电位。
2.特点:①等级性;②电紧张传播,其随传播距离增加而逐渐衰减;③没有不应期。
五、可兴奋细胞及其兴奋性
1.兴奋性和可兴奋细胞:兴奋性是指细胞受到刺激后产生动作电位的能力,而兴奋已被看作是动作电位的同义语或动作电位的产生过程。凡在接受刺激后能产生动作电位的细胞,称为可兴奋细胞。一般认为,神经细胞、肌肉细胞和腺细胞都属于可兴奋细胞。
2.阈刺激:刺激是指能引起组织细胞发生反应的各种内外环境的变化。任何刺激要引起组织兴奋必须使刺激的强度、刺激的持续时间以及刺激强度对时间的变化率达到某个最低有效值。刺激的这三个参数是互相影响的,当其中一个的值变化时,其余的值也会发生相应的变化。
在刺激的持续时间以及刺激强度对时间的变化率不变的情况下,刚能引起细胞兴奋或产生动作电位的最小刺激强度,称为阈强度,此时的刺激称为阈刺激。比阈刺激弱的刺激称为阈下刺激;比阈刺激强的刺激称为阈上刺激。阈刺激或阈强度(阈值)一般可作为衡量细胞兴奋性的指标,二者呈反比关系。
3.细胞兴奋后兴奋性的变化:细胞在发生一次兴奋后,其兴奋性会出现一系列变化,依次分为:绝对不应期、相对不应期、超常期和低常期。它们与动作电位各时期的关系是:绝对不应期大约相当于锋电位发生的时期;相对不应期和超常期大约相当于负后电位出现的时期;低常期则相当于正后电位出现的时期。