考研

各地资讯
当前位置:华课网校 >> 考研 >> 考试大纲 >> 数学大纲 >> 文章内容

2018年考研农学数学考试大纲_第2页

来源:华课网校  [2017年8月17日]  【

  考试要求

  1.了解多元函数的概念,了解二元函数的几何意义.

  2.了解二元函数的极限与连续的概念.

  3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

  4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.

  5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

  五、常微分方程

  考试内容

  常微分方程的基本概念变量可分离的微分方程一阶线性微分方程

  考试要求

  1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

  2.掌握变量可分离的微分方程和一阶线性微分方程的求解方法.

  线性代数

  一、行列式

  考试内容

  行列式的概念和基本性质行列式按行(列)展开定理

  考试要求

  1.了解行列式的概念,掌握行列式的性质.

  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

  二、矩阵

  考试内容

  矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价

  考试要求

  1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

  4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

  三、向量

  考试内容

  向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系

  考试要求

  1.了解向量的概念,掌握向量的加法和数乘运算法则.

  2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

  3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.

  4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.

  四、线性方程组

  考试内容

  线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解

  考试要求

  1.会用克拉默法则解线性方程组.

  2.掌握非齐次线性方程组有解和无解的判定方法.

  3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

  4.了解非齐次线性方程组的结构及通解的概念.

  5.掌握用初等行变换求解线性方程组的方法.

  五、矩阵的特征值和特征向量

  考试内容

  矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵

  考试要求

  1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

  2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.

  3.了解实对称矩阵的特征值和特征向量的性质.

  概率论与数理统计

  一、随机事件和概率

  考试内容

  随机事件与样本空间事件的关系与运算概率的基本性质古典型概率条件概率概率的基本公式事件的独立性独立重复试验

  考试要求

  1.了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.

  2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.

  3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

  二、随机变量及其分布

  考试内容

  随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布

  考试要求

  1.理解随机变量的概念,理解分布函数

  的概念及性质,会计算与随机变量相联系的事件的概率.

  2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B(n,p)、泊松(Poisson)分布P(λ)及其应用.

  3.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b)、正态分布N(μ,δ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为

  4.会求随机变量简单函数的分布.

  三、二维随机变量及其分布

1 2 3
责编:18874849045

报考指南

  • 学历考试
  • 会计考试
  • 建筑工程
  • 职业资格
  • 医药考试
  • 外语考试
  • 外贸考试
  • 计算机类